Home Table of Contents

 

BIBLIOGRAPHY
 
 

 

INTRODUCTION

  1. Eltorai IM. History of spinal cord injury. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 3-14.
  2. You Will Never Walk Again. http://www.isci.is/Aboutus/Media/Youwillneverwalkagain/. [Accessed November 25, 2009].
  3. Johnston L. A real-world therapy. PN/Paraplegia News, April 2002: 18-22.
  4. Johnston L. New & emerging approaches to spinal cord injury treatment. Spinal Cord 2001; 39(11): 609-613.
  5. Towards concerted efforts for treating and curing spinal cord injury. Social Health and Family Affairs Committee, Council of Europe, Document 9401, March 27, 2002.
  6. Spinal Cord Injury: Progress, Promise, and Priorities, Institute of Medicine, National Academy of Sciences, Washington, D.C., The National Academies Press, 2005.
  7. Assessing the Efficacy and Safety of Medical Technologies, Congressional Office of Technology Assessment, 1978.
  8. "Absence of evidence is not evidence of absence.” http://thinkexist.com/quotation/absence_of_evidence_is_not_evidence_of_absence/154055.html [Accessed November 26, 2009].
  9. WHO Traditional Medicine Strategy 2002-2005. Geneva, Switzerland: World Health Organization, 2002.
  10. Berkowitz M, O’Leary PK, Kruse, DL, et al. Spinal Cord Injury: An Analysis of Medical and Social Costs. New York, NY: Demos Medical Publishing, 1998.
  11. Spinal Cord Injury Facts and Figures at a Glance (June 2006), National Spinal Cord Injury Statistical Center: www.spinalcord.uab.edu [Accessed January 19, 2007].
  12. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature search? Spinal Cord 2006: 44(9): 523-529.
  13. Ouzky M. Towards concerted efforts for treating and curing spinal cord injury. Council of Europe Doc.9401, March 27, 2002.
  14. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature search? Spinal Cord 2006: 44(9): 523-529.
  15. Global Summary of Spinal Cord Injury, Incidence and Economic Impact: www.campaignforcure.org/globalsum.htm [Accessed January 19, 2007].
  16. Zhao YD, Wand W. Neurosurgical trauma in People’s Republic of China. World Journal of Surgery 2001; 25(9): 1202-1204.
  17. Hollingworth W, Relyea-Chew A, Comstock BA, et al. The risk of bankruptcy before and after brain or spinal cord injury: a glimpse of the iceberg’s tip. Med Care 2007; 45(8): 699-701.
  18. Relyea-Chew A, Hollingworth W, Chan L, et al. Personal bankruptcy after traumatic brain or spinal cord injury: The role of medical debt. Arch Phys Med Rehabil 2009; 90(3); 413-419.

CELL TRANSPLANTATION

  1. Scott CT. Stem Cell Now. New York, NY: Pi Press; 2006.
  2. Kiessling AA, Anderson SC. Human Embryonic Stem Cells. Sudbury, MA: Jones and Bartlett Publishers, 2007.
  3. Escada PA, Lima C, da Silva JM. The human olfactory mucosa. Eur Arch Otorhinolaryngol 2009; 266(11): 1675-1680.
  4. Radtke C, Sasaki M, Lankford KL, et al. Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. J Rehabil Res Dev 2008; 45(1): 141-152.
  5. Richter MW, Roskams AJ. Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope? Exp Neurol 2008; 209(2): 353-367.
  6. Murrell W, Wetzig A, Donnellian M, et al. Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 2008; 26(8): 2183-2192.
  7. Huang H, Chen L, Xi H, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant 2008; 22: 710-718.
  8. Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 2007; 161: 367-383.
  9. Sykova E, Jendelova P, Herynek V. MR tracking of stem cells in living recipients. Methods Mol Biol 2009: 549: 197-215.
  10. Lee IH, Bulte JWM, Schweinhardt R, et al. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 2004; 187(2): 509-516.
  11. Takahashi Y, Tsuji O, Kumagai G, et al. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant 2010, Nove 5. [Epub ahead of print].
  12. Callera F, de Melo CM. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev 2007; 16(3): 461-466.
  13. Wright KT, El Masri, W, Osman A, et al. The cell culture expansion of bone marrow stromal cells from humans with spinal cord injury: implications for future cell transplantation therapy. Spinal Cord 2008; 46: 811-817.

OLFACTORY CELL/TISSUE TRANSPLANTATION

  1. Johnston L. Olfactory Tissue Restores Injured Spinal Cords? Paraplegia News, March 2003.
  2. Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: A pilot clinical study. J Spinal Cord Med 2006; 29(3): 191-203.
  3. Cristante AF,  Barros-Filho TEP, N Tatsui, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009; 47: 733-738.
  4. Johnston L. Restoring function: OEC transplantation. PN/Paraplegia News, April 2004: 40-41.
  5. Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010; 24(1): 10-22.
  6. Chhabra HS, Lima C, Sachdeva S, et al. Autologous mucosal transplant in chronic spinal cord injury: an Indian pilot study. Spinal Cord 2009 Jun 2; Epub ahead of print.
  7. Huang H, Chen L, Wang H, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J 2003; 116(10): 1488-1491.
  8. Huang H, Chen L, Wang H, et al. Short-term effect of olfactory ensheathing cells transplantation on the improvement of neurological functions in patients with chronic spinal cord injury. Chin J Clin Rehabil 2006; 10(13): 190-192.
  9. Huang H, Wang H, Chen L, et al. Influence factors for functional improvement after olfactory ensheathing cell transplantation for chronic spinal cord injury. Chin J Reparative & Reconstructive Surg 2006; 20(4): 434-438.
  10. Huang H, Chen L, Wang H, et al. Safety of fetal olfactory ensheathing cell transplantation in patients with chronic spinal cord injury: A 38-month follow-up with MRI. Chin J Reparative & Reconstructive Surg 2006; 20(4): 439-443.
  11. Huang H, Xi H, Chen L, et al. Long-term outcome of olfactory ensheathing cell therapy for paients with complete chronic spinal cord injury. Cell Transplant 2012; 21 suppl 1: S65-77.
  12. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005; 128(12): 2951-2960.
  13. MacKay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008; 131: 2376-2386.
  14. Mackay-Sim A, St John JA. Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol 2011; 229(1): 174-180.
  15. Sun T. Transplantation of olfactory ensheathing cells for the treatment of spinal cord injury – experimental and clinical observation. 1st International SCI Treatments & Trials Symposium, Hong Kong, December 2005.
  16. Wu J, Sun T, Ye C, et al. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant 2012; 21 Suppl 1: S33-37.
  17. Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. http://clinicaltrials.gov/show/NCT01231893 [Accessed January 21, 2013].
  18. Jarmundowicz, Olfactory glial cells: hope in the treatment of spinal cord injuries. Neurol Neurochir Pol 2004; 38(5): 421-422.
  19. Pawel Tabakow, Wroclaw Medical University (personal communication, September 13, 2008 following discussion posted on CareCure Forum, http://sci.rutgers.edu/forum/index.php).
  20. Pawel Tabakow, Wroclaw Medical University (personal communication, June 23, 2010).
  21. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 2013; Apr 2 [Epub ahead of print].
  22. Tabakow P, Raisman G, Fortuna W, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 2014, Oct 21 [Epub ahead of print].

STEM-CELL TRANSPLANTATION

NORTH AMERICA (US & CANADA)

  1. Geron, http://www.geron.com/GRNOPC1Trial/ [Accessed June 16, 2011].
  2. Safety Study of GRNOPC1 in Spinal Cord Injury.  http://clinicaltrials.gov/ct2/show/NCT01217008 [Accessed June 16, 2011]
  3. Geron and FDA Reach Agreement on Clinical Hold http://www.geron.com/media/pressview.aspx?id=1195 [Accessed November 7, 2009].
  4. FDA lifts hold on embryonic stem cell trial http://www.msnbc.msn.com/id/38490858/ns/health-more_health_news/ [Accessed July 30, 2010].
  5. Geron Presents Data From GRNOPC1 Trial at International Conferences on Spinal Cord Medicine and Rehabilitation. http://www.geron.com/media/pressview.aspx?id=1271 [Accessed June 16, 2011].
  6. Kierstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005; 24(19): 4694-4705.
  7. Transfer of Bone Marrow Derived Stem Cells for the Treatment of Spinal Cord Injury. http://clinicaltrials.gov/ct2/show/NCT01162915?term=TCA+CEllular+Therapy&rank=6. [Accessed November 14, 2012].
  8. Ichim TE, Solano F, Lara F, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010; 3:30.
  9. MediStem: The Future of Medicine http://medisteminc.com/  [Accessed February 19, 2013].

MEXICO, SOUTH AMERICA

  1. Tarcisio Barros, University of Sao Paulo (personal communication, February 1 2005 following up extensive discussion posted on CareCure Forum, http://sci.rutgers.edu/forum/index.php).
  2. Cristante AF,  Barros-Filho TEP, N Tatsui, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009; 47: 733-738.
  3. Moviglia GA, Fernandsez V, Brizuela JA, et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and recovery of two patients. Cytotherapy 2006; 8(3): 202-209.
  4. Moviglia GA, Varela G, Brizuela JA, et al. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients. Spinal Cord 2009; 47(6): 499-503.
  5. Geffner LF, Izurieta M, Maldonado B, et al., Direct surgical implantation of autologous bone marrow stem cells in spinal cord injury: Preliminary report. 13th Annual Meeting of the International Society for Cellular Therapy. Sydney Australia, June 2007.
  6. Geffner LF, Santacruz, P, Izurieta M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008; 17(12): 1277-1293.
  7. Stem Cell Administration Study Demonstrates Improved Quality of Life For Patients Sufferring From Spinal Cord Injury (Press Release, March 13, 2009) http://www.dvbiosciences.com/pdfs/March2009_DVBStemCellStudy.pdf. [Accessed July 15, 2009].
  8. Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study. Exp Hematol 2006; 34(2): 130-131.
  9. Jacques E. Stem cell treatment for paralyzed patients. Program, ICS 39th North American Federation Congress, Acapulco, Mexico, June 15-18, 2005.
  10. Medra, www.medra.com [Accessed September 6, 2005].
  11. Stem Cell of America, http://stemcellofamerica.com/ [Accessed January 22, 2013].

EUROPE

  1. Sykova E, Jendelova P, Urdzikova L, et al. Bone marrow stem cells and polymer hydrogels – Two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006, 26 (7-8): 1113-1129.
  2. Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15(8-9): 675-687.
  3. Sykova E. Treatment of spinal injury using autologous stem cells and biomaterials. Program and Abstracts, The 2nd International Association of Neurorestoratology Annual Conference, 2009: 24.
  4. Jeanmaire C, Johnston, L. Dutch stem-cell program. PN/Paraplegia News, March 2006: 24-26.
  5.  X-Cell Center, http://www.xcell-center.com/  [Accessed July 22, 2010].
  6. Mum of autistic boy ‘in shock’ over stem-cell centre closure. http://www.independent.ie/national-news/mum-of-autistic-boy-in-shock-over-stemcell-centre-closure-2641128.html [Accessed June 16, 2011].
  7. Hadjianev A, Bussarsky V, Mirchev N, et al. Treatment of chronic spinal cord injury patients by autologous bone marrow stem cell-derived growth and trophic factors (safety profile and clinical results). 60th Annual Meeting of the German Society of Neurosurgery (DGNC) Joint Meeting with the Benelux countries and Bulgaria. Muenster, Germany, May 24-27, 2009, http://www.egms.de/de/meetings/dgnc2009/09dgnc258.shtml [Accessed July 15, 2009]. 
  8. Bourke F. I’ll never give up my fight to walk again. The Birmingham Post, January 15 2006.
  9. Enserink M. Selling the stem cell dream. Science 2006; 313: 160-163.
  10. Study of Human Central Nervous System Stem Cells (HuCNS-SC) in Patients with Thoracic Spinal Cord Injury. http://clinicaltrials.gov/ct2/show/NCT01321333?term=Armin+Curt&rank=1 [Accessed June 22, 2011].
  11. StemCells, Inc. Initiates World’s First Neural Stem Cell Trial in Spinal Cord Injury. http://investor.stemcellsinc.com/phoenix.zhtml?c=86230&p=irol-newsArticle_print&ID=1538868&highlight=  [Accessed June 22, 2011].
  12. California company to use stem cells from aborted babies to treat paralysis. http://www.lifesitenews.com/news/california-company-to-use-neural-stem-cells-from-aborted-babies-to-treat-pa/ [Accessed June 22, 2011].
  13. A Tiny Step Forward for Spinal Cord Injuries. http://www.cnn.com/2012/09/07/health/spinal-cord-injuries-study/index.html [Accessed January 13, 2013].
  14. Guzman R, Schubert M, Keller-Lang D, et al. Human neural stem cell transplantation in chronic SCI: Interim Results of Phase I/II trial. Neurosurgery 2013; 60 (Suppl1): 185.

ASIA - RUSSIA

  1. Johnston, L. Russian stem-cell therapy. PN/Paraplegia News, September 2005: 16-23.
  2. Frolov AA, Bryukhovetskiy AS. Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplant 2012; 21 Suppl 1: S49-55.
  3. Rabinovich SS, Seledtsov VI, Poveschenko OV, et al. Transplantation of spinal cord injury patients. Biomed Pharmacother 2003; 57(9): 428-433.
  4. Seledtsova GV, Rabinovich SS, Belogorodtsev SN, et al. Delayed results of transplantation of fetal neurogenic tissue in patients with consequences of spinal cord trauma. Bull Exp Biol Med 2010; 149(4): 530-533.
  5. Center for Immunotherapy and Cell-Based Technologies, www.transplantation.ru [Accessed June 6, 2009].
  6. Chernykh ER, Stupak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 2007; 143: 543-547.

ASIA - CHINA, KOREA, & JAPAN

  1. Kang K-S, Kim YH, Oh JW, et al. A 37-year-old spinal-cord-injured female patient, transplanted of multipotent stem cells from UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy 2005; 7(4): 368-373.
  2. Park HC, Shim YS, Yoon H, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005: 11(5/6): 913-922.
  3. Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007; 25(8): 2066-2073.
  4. Zhang Y. Clinical study on repair of injured spinal cord transplants of autologous bone-marrow stem cells. 1st International SCI Treatments & Trials Symposium, Hong Kong, December 2005.
  5. Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: The first clinical trial case report. J Trauma 2008; 64(1): 53-59.
  6. Saito F, Nakatani T, Iwase M, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 2012; 30(2): 127-136.
  7. Beike Biotechnology Company, www.beikebiotech.com [Accessed November 5, 2008]. 
  8. China Stem Cell News, www.chinastemcells.com [Accessed November 5, 2008].
  9. Johnston L. Stem Cells China, PN/Paraplegia News, March 2009: 42-46.
  10. Tiantan Puhua Stem Cell Treatment www.stemcellspuhua.com. [Accessed July 15, 2009].
  11. Vivian Wang, Manager, Tiantan Puhua Hospital (personal communication, July 24, 2007).

ASIA- INDIA & OTHER

  1. Johnston L. Embryonic stem-cell therapy, PN/Paraplegia News, August 2007: 24-28.
  2. Shroff GB. Human embryonic stem cells transplantation on paralytic patients. American Society of Gene Therapy, St. Louis, Missouri, USA, June 2005.
  3. Shroff G, Patent Application: Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation. http://www.freshpatents.com/-dt20090514ptan20090123433.php [Accessed June 23, 2009].
  4. Stem cell therapy for the treatment of spinal cord injury: safety and efficacy study. http://www.manipalhospital.org/Heart-found/stem/sc_ct_1.htm. [Accessed April 3, 2006].
  5. Pal R, Venkataramana NK, Bansal A et al. Ex vivo-expanded autologous bone-marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009; 11(7): 897-911.
  6. Lifeline Hospital in Chennai, India www.stemcell-india.com [Accessed January 12, 2007].
  7. Narayanan S, Kumar RR, Abraham S. et al. Autologous stem cell injection for spinal cord injury – A clinical study from India. The Stem Cell Summit. Boston, Massachusetts, USA, October 2-3, 2007.
  8. Nichi-In Center for Regenerative Medicine www.ncrm.org [Accessed November 15, 2007].
  9. Kumar AA, Kumar SR, Narayanan R, et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 2009; 7(4): 241-248.
  10. Al-Zoubi A, Jamoos M, Al-Zoubi Z. Treatment of spinal cord injuries using purified stem-cells – A Jordanian experience, Program and Abstracts, The 2nd International Association of Neurorestoratology Annual Conference, 2009: 12.
  11. Al-Zoubi A. The 3rd International Association of Neurorestoratology Annual Conference. Beijing, China, April 2010.
  12. Deda H, Inci MC, Kurekci AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008; 10(6): 565-574.
  13. Bansal H. (personal communication, April 16, 2010).
  14. Spectrum Cell Clinic www.spectrumcellclinic.com [Accessed July 14, 2010].
  15. Another Indian doctor doing stem cell treatment. http://sci.rutgers.edu/forum/showthread.php?t=132004 [Accessed July 14 2010].
  16. Waghmare S. (personal communication, July 15, 2010).
  17. NeuroGen Brain and Spine Institute www.neurogen.in [Accessed September 14, 2010].
  18. Attar A, Ayten M, Ozdemir M, et al. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated bone marrow cells. Cytotherapy 2011; 13(1): 54-60.

AFRICA

1.      Kishk NA, Gabr H. Hamdy S, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neueral Repair 2010; 24(28): 702-708.

OTHER CELL TRANSPLANTATION

  1. Johnston L. Shark embryo cell transplantation. PN/Paraplegia News, September & October, 1999.
  2. Dr. Fernando Ramirez Del Rio Stem Cells, www.ramirezdelrio.com [Accessed July 15, 2009].
  3. Diacrin porcine neural stem cell transplant trial for chronic spinal cord injury, reported on CareCure Forum, http://sci.rutgers.edu/forum/showthread.php?t=39633. [Accessed July 15, 2009]
  4. Zhu H. Intraspinal transplantation of human fetal Schwann cells in paraplegic patients. 1st International SCI Treatments & Trials Symposium, Hong Kong, December 2005.
  5. Firouzi M, Moshayedi P, Saberi H, et al. Transplantation of Schwann cells to subarachnoid space induces repair in contused rat spinal cord. Neurosci Lett. 2006; 402 (1-2): 66-70.
  6. Masoumeh Firouzi, Institute of Biochemistry and Biophysics, University of Tehran (personal communication, October 2, 2006).
  7. Saberi H, Moshayedi P, Aghayan HR, et al, Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 2008; 443(1): 46-50.
  8. Saberi H, Firouzi M, Habibi Z, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15(5): 515-525.
  9. Zhou XH, Ning GZ, Feng SQ, et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant 2012. 21 Suppl 1: S39-47.
  10. FDA Gives Miami Project to Cure Paralysis Green Light to Begin Human Clinical Trial, http://www.themiamiproject.org/announcement. [Accessed November 8, 2012].

EMBRYONIC TISSUE TRANSPLANTATION & POSTTRAUMATIC SYRINGOMYELIA

  1. Falci S, Holtz A, Akesson E, et al. Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J Neurotrauma 1997; 14(11): 875-884.
  2. Wirth ED 3rd, Reier PJ, Fessler RG, et al. Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J Neurotrauma 2001; 18(9): 911-929.

STEM-CELL-INFLUENCING SCI THERAPIES

  1. Mothe AJ, Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 2005; 131: 177-187.
  2. Swanson C. Life Force, The Scientific Basis: Breakthrough Physics of Energy Medicine, Healing, Chi and Quantum Physics. Tucson, AZ: Poseidia Press; 2010.
  3. Liu Z, Pan P, Qi Y, et al. Effect of acupuncture of Anshenbunao and Yiqitongluo method on neuronal apoptosis and protein expression of nerve growth factor in brain tissues of newborn rats with hypoxix-ischemic injury.  Program and Abstracts, The 2nd International Association of Neurorestoratology Annual Conference, 2009: 69.
  4. Wang WC, Ma J, Wang H. Effects of Shuanggu Yitong needling method on proliferation and differentiation of nerve stem cells in the Parkinson’s disease model rat. Zhingguo Zhen Jiu 2006; 26(4): 277-288.
  5. Tang Y, Yin HY, Zeng F, Yu SG. Pondering in-situ induction of endogenous neural stem cells in hippocampus of rats with Alzheimer disease by acupuncture. Zhing Xi Yi Jie He Xue Bao 2005. 3(5); 351-354.
  6. Yang C, Li B, Liu TS, et al. Effect of electroacupuncture on proliferation of astrocytes after spinal cord injury. Zhongguo Zhen Jiu 2005; 25(8): 569-572.
  7. Ding Y, Yan Q, Ruan JW, et al. Electro-acupuncture promotes survival, differentiation of the bone marow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci 2009; 10: 35.
  8. Yan Q, Ruan JW, Ding Y, et al. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxico Pathol [Epub ahead of print].
  9. Sun Z, Li X, Su Z, et al. Electroacupuncture-enhanced differentiation of bone marrow stromal cells into neuronal cells. J Sport Rehabil 2009; 18(3): 398-406.
  10. Liu Z, Ding Y, Zeng YS. A new combined therapeutic strategy of governor vessel electroacupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord. Curr Med Chem 2011; 18(33): 5165-1571.
  11. Shang C. Electrophysiology of growth control and acupuncture. Life Sci 2001; 68(12): 1333-1342.
  12. Shang C. Prospective tests on biological models of acupuncture. Evid Based Complement Alternat Med 2009; 6(1): 31-39.
  13. Charles Shang, Harvard Medical School (personal communication, June 10, 2006).
  14. Byrnes KR, Wu X, Waynant RW, et al. Low power irradiation alters gene expression of olfactory ensheathing cells.  Lasers Surg Med 2005; 37(2): 161-171.
  15. Rochkind S, Shahar A, Amon M, et al. Transplantation of embryonal spinal cord nerve cells cultured on biodegradable microcarriers followed by low power laser irradiation for the treatment of traumatic paraplegia in rats. Neurol Res 2002; 24(4): 355-360.
  16. Bohbot, A. Laserponcture contribution in the neural restoration. 1st International Association of Neural Restoration Annual Conference, Beijing, China, May 2008.
  17. Jacques E. Stem cell treatment for paralyzed patients. Program, ICS 39th North American Federation Congress, Acapulco, Mexico, June 15-18, 2005.
  18. Bohbot A. Olfactory ensheathing glia transplantation combined with LASERPONCTURE in human spinal cord injury: Results measured by electromyography monitoring. Cell Transplant 2010; 19(2): 179-184.
  19. Young W. Hyperbaric oxygenation therapy,   
  20. Chen CF, Yang YJ, Wang QH, et al. Effect of hyperbaric oxygen administered at different pressures and different exposure time on differentiation of neural stem cells in vitro. Zhongguo Dang Dai Er Ke Za Zhi 2010; 12(5): 368-372.
  21. Yang YJ, Wang XL, Yu XH, et al. Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemia brain damage in neonatal rats. Undersea Hyperb Med 2008; 35(2): 113-129.
  22. Wang XL, Yang YJ, Xie M, et al. Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic ischemia brain damage. Zhongguo Dang Dai Er Ke Za Zhi 2009; 11(9): 749-752.
  23. Pan HC, Chin CS, Yang DY, et al., Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem Res 2009. 34(7) 1304-1316.
  24. Shyu KG, Hung HF, Wang BW, et al. Hyperbaric oxygen induces placental growth factor expression in bone marrow-derived mesenchymal stem cells. Life Sci 2008; 83(1-2): 65-73.
  25. Thom SR, Bhopale VM, Velazquez OC, et al. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart & Circ Physiol 2006; 290(4): 1378-1386.
  26. Garcia-Gomaz I, Goldsmith HS, Angulo J, et al. Angiogenic capacity of human omental stem cells. Neurol Res 2005; 27(8): 807-811.
  27. Young W. Pulsed electromagnetic fields (diapulse) alter calcium in spinal cord injury, Presentation to American Paralysis Association Meeting, San Francisco, CA. May 20, 1984.
  28. Kiwerski J, Chrostowska T, Weiss, M. Clinical trials of the application of pulsating electromagnetic energy (diapulse) in the treatment of spinal cord lesions. Narz Ortoped, Pol 1980; 45(3): 273-277.
  29. Goodwin TJ. Physiological and molecular genetic effects of time-varying electromagnetic fields on human neuronal cells.  http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2003-212054.pdf. [Accessed August, 8, 2006].
  30. Nakamichi NN, Ishioka Y, Hira T, et al. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism. J Neurosci Res 2009; 87(11): 2406-2417.
  31. Ao Q, Sun X-H, Wang AJ, et al. Protective effects of extract of Ginkgo biloba (EGB 761) on nerve cells after spinal cord injury in rats. Spinal Cord 2006; 44: 662-667.
  32. Sun J-H, Gao Y-M, Yang L, et al. Effects of buyyang huanwu decoction on neurite outgrowth and differentiation of neuroepithelial stem cells. Chin J Physiol 2007; 50(4): 151-156.
  33. Chen A, Wang H, Zhang J, et al. BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 2008; 117(3): 451-456.
  34. Fan L, Wang K, Cheng B. Effects of buying huanwu decoction on apoptosis of nervous cells and expressions of Bci-2 and bax in the spinal cord of ischemia-reprusion injury ion rabbits. J Tradit Chin Med 2006; 26(2): 153-156.
  35. Yune TY, Lee JY, Cui CM, et al. Neuroprotective effect of Scutellaria bicalensis on spinal cord injury in rats. J Neurochem 2009; 110(4): 1276-1287.
  36. Tohda C. Overcoming several neurodegenerative diseases by traditional medicines: the development of therapeutic medicines and unraveling pathophysiological mechanisms. Yakugaku Zasshi 2008; 128(8): 1159-1167.
  37. Prasad GC, Khanna RP, Prakash V, et al. Effect of lajjawanti (mimosa pudica Linn.) on regeneration of nerve. Jur Res Ind Med 1975; 10(4): 37-44.
  38. Drapeau C. Triple-blind randomized placebo-controlled study of the effect of StemEnhance on bone marrow stem cell mobilization. http://img.exigo.com/public/1595/websites/62/images/summaryoftripleblindstudyv2.pdf. [Accessed November 24, 2009].
  39. Jensen GS, Hart AN, Zaske LA, et al. Mobilization of human CD34+ CD133+ and CD34 CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae—related to modulation of CXCR4 expression by a L-selectin ligand? Cardiovasc Revasc Med 2007; 8(3): 189-202.
  40. Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol Res 2004; 26(4): 422-428.
  41. Johnston L. Alternative Medicine and Spinal Cord Injury: Beyond the Banks of the Mainstream New York (NY): Demos Medical Publishing, 2006.
  42. Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 2009 Sep 30; Epub ahead of print.
  43. Wang D, Yang Z, Zhang J. Treatment of spinal cord injury by mild hypothermia combined with bone marrow mesenchymal stem cells transplantation in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2010; 24(7): 801-805.
  44. Spalding BT. Life and Teachings of the Masters of the Far East, Volume VI. Marina del Rey, CA: DeVorss & Company; 1996.
  45. Johnston L, Boxtel A. Stem-Cell Consciousness: The Divine Ground of Healing, Townsend Letter: The Examiner of Alternative Medicine, June 2010: 50-55.
  46. Lipton B. The Biology of Belief. Santa Rosa, CA: Mountain of Love/Elite Books; 2005.
  47. Encinas JM, Vazquez ME, Switzer RC, et al. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Expl Neurol 2008; 210(1): 274-279.
  48. Dietrich J, Han R, Yang Y, et al. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 2006; 5(7): 22.
  49. Duffner PK. The long term effects of chemotherapy on the central nervous system. J Biol 2006; 5(7): 21.

 

FUNCTION RESTORING SURGERIES USING PERIPHERAL NERVES

  1. Johnston L. New and emerging approaches to spinal cord injury treatment. Spinal Cord 2001; 39(11): 609-613.
  2. Johnston L. 5th International symposium on spinal cord repair and regeneration. PN/Paraplegia News, August 2004: 24-27.
  3. Brunelli G. Making paraplegics walk again. Surg Technol Int 2003; 11: 239-243.
  4. von Wild KR, Brunelli G. Restoration of locomotion in paraplegics with aid of autologous bypass grafts for direct neurotisation of muscles by upper motor neurons – the future: surgery of spinal cord? Acta Neurochir Suppl 2003; 87: 107-112.
  5. Brunelli G. Research on the possibility of overcoming traumatic paraplegia and its first clinical results. Curr Pharm Des 2005; 11(11): 1421-1428.
  6. Brunelli G, Surgical repair of spinal cord injuries. Bull Acad Natl Med 2005; 189(6): 1135-1148.
  7. Brunelli G, Wild K. Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Reconstr Micorsurg 2008; 24(4): 301-304.
  8. Johnston L. A real-world therapy. PN/Paraplegia News, April 2002: 18-22.
  9. Zhang S, Johnston L, Zhang Z, et al. Restoration of stepping-forward and ambulatory function in patients with paraplegia: Rerouting of vascularized nerves to lumbar nerve roots using selected interfascicular anastomosis.  Surg Technol Int. 2003; 11: 244-248.
  10. Zhang S, Johnston L, Hu Y, et al. Restoration of Bowel and Bladder Function in Patients with Paraplegia by Vascularized Intercostal Nerve Transfer to Sacral Nerve Roots with Selected Interfascicular Anastomosis. http://www.healingtherapies.info/Bowel&Bladder.htm [Accessed November 28, 2009].
  11. Zhang S, Wang Y, Johnston L. Restoration of function in complete spinal cord injury using peripheral nerve rerouting: a summary of procedures. Surg Technol Int 2008; 17: 287-291.
  12. Livshits A, Catz A, Folman Y, et al. Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord. 2004; 42(4): 211 -217.
  13. Xiao C-G, Du M-X, Dai C, et al. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury: Preliminary results in 15 patients. J Urol 2003; 171(6): 1237-1241.
  14. Xiao C-G. Reinnervation for neurogenic bladder: historic review and introduction of a somatic-autonomic reflex pathway procedure for patients with spinal cord injury or spina bifida. Eur Urol 2006; 49(1): 22-29.
  15. Xiao procedure reported on CareCure Forum, http://sci.rutgers.edu/forum/showthread.php?t=132379. [Accessed June 2, 2010].
  16. Xiao C-G. A somatic-autonomic reflex pathway procedure (Xiao Procedure) for refunctionization of bladder and bowel in SCI and spina bifida. http://webcasts.prous.com/netadmin/webcast_viewer/Preview.aspx?type=0&lid=10196&pv=2&preview=False&idcl=1 [Accessed June 19, 2010].
  17. Lumbar to sacral ventral nerve re-routing, http://clinicaltrials.gov/ct2/show/NCT00378664 [Accessed December 1, 2009].
  18. Lin H, Hou C-L, Zhong G, et al. Reconstruction of reflex pathways to the atonic bladder after conus medullaris injury: preliminary clinical results. Microsurgery 2008: 28(6); 429-435.
  19. Tadie M, Liu S, Robert R, et al. Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 2002; 19(8): 909-916.
  20. Carlsson C-A, Sundin T. Reconstruction of afferent and efferent nervous pathways to the urinary bladder in two paraplegic patients. Spine. 1980; 5(1): 37-41.
  21. Carlsson C-A, Sundin T. Reconstruction of efferent pathways to the urinary bladder in a paraplegic child. Rev Surg 1967; 24(1): 73-76.
  22. Makino H. Takamura R, Yamano N, et al. Clinical experience on intercostal and cauda equina motoric Nerve anastomosis. Neurol. Mediochir (Tokyo). 1964; 6: 146-147.
  23. Freeman LW. Neuronal regeneration in the central nervous system of man: Successful growth of intercostal-spinal nerve anastomosis and growth of intercostal nerve-spinal cord implant. J Neurosurg. 1961; 18: 417-422.
  24. Vorstman B, Schlossberg S, Kass K. Investigations on urinary bladder reinnervation: historical perspective and review. Urology. 1987; 30(2): 89-96.
  25. Frazier CH, Mills CK. Intradural root anastomosis for relief of paralysis of the bladder. JAMA. December 21, 1912: 2202-2204.
  26. Kilvington B. An investigation on the regeneration of nerves, with regard to surgical treatment of certain paralyses. Br Med J. April 27, 1907: 988-990.

IMPLANTING PERIPHERAL NERVE SEGMENTS INTO THE CORD

  1. Cheng H, Cao Y, Olson L. Spinal Cord repair in adult paraplegia rats: Partial restoration of hind limb function. Science 1996; 273(5274): 510-513.
  2. Cheng H, Spinal cord repair with acidic FGF as a treatment for the patients with chronic paraplegia and qudriplegia. 1st International SCI Treatments & Trials Symposium, Hong Kong, December 2005.
  3. Cheng H, Liao KK, Liao, SF, et al., Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine 2004; 29(14): 284-288.
  4. Zhang S, Johnston L, Xu S-G, et al. Restoration of function in patients with obsolete spinal cord injury by intradural lysis and peripheral nerve implantation. http://www.healingtherapies.info/Intradural-Implantation.htm [Accessed December 1, 2009].
  5. Carl Kao’s surgical procedure in Ecuador. http://sci.rutgers.edu/forum/showthread.php?t=39640 [Accessed December 1, 2009]

OMENTAL TRANSPOSITION AND TRANSPLANTATION

  1. Johnston L. The omentum momentum. PN/Paraplegia News, March 2001: 48-52.
  2. Goldsmith HS (editor). The Omentum Application to Brain and Spinal Cord. Wilton, CT; Forefront Publishing; 2000.
  3. Agner C, Yeomans D, Dujovny M. The neurochemical basis for the applications of the greater omentum in neurosurgery. Neurol Res 2001; 23(1): 7-15.
  4. Garcia-Gomaz I, Goldsmith HS, Angulo J, et al. Angiogenic capacity of human omental stem cells. Neurol Res 2005; 27(8): 807-811.
  5. Clifton GL, Donovan WH, Dimitrijevic MM, et al. Omental transposition in chronic spinal cord injury. Spinal Cord 1996; 34(4): 199-203.
  6. Goldsmith HS, Omental transposition in chronic spinal cord injury. Spinal Cord 1997; 35(3): 189-190.
  7. Goldsmith HS, Fonseca A, Porter J. Spinal cord separation: MRI evidence of healing after omentum-collagen reconstruction. Neurol Res 2005; 27(2): 115-123.
  8. Goldsmith HS, Can the standard treatment of acute spinal cord injury be improved? Perhaps the time has come. Neurol Res 2007; 29: 16-20.
  9. Goldsmith HS (editor). The Omentum: Basic Research and Clinical Applications. Woodbury, CT: Ciné-Med Publishing; 2010.
  10. Goldsmith HS, Omental application in the treatment of spinal cord injuries: a controlled study is warranted. J Trauma Treat 2012; 1: 127.
  11. Dr. Himanshu Bansel Foundation, http://drhimanshubansalfoundation.com/Aboutus.html [Accessed December 2, 2009].
  12. Johnston L. New & emerging approaches to spinal cord injury treatment. Spinal Cord 2001; 39(11): 609-613.

SPINAL CORD DECOMPRESSION

  1. Papadopoulos SM, Selden, NR, Quint DJ, et al. Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome. J Trauma 2002; 52(2): 323-332.
  2. Fehlings MG, Sekhon LH, Tator C. The role and timing of decompression in acute spinal cord injury. Spine 2001; 26(24S): S101-110.
  3. Fehlings MG, Perrin RG. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of recent clinical evidence. Spine 2006: 31(11S): S28-35.
  4. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured patients? Spinal Cord 2004; 42(9): 503-512.
  5. Fehlings MG, Rabin D, Sears W, et al. Current practice in the timing of surgical intervention in spinal cord injury. Spine 2010; 35(21 Suppl); S166-175.
  6. Xu K, Chen QX, Li FC, et al. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury. J Zhejiang Univ Sci B 2009; 10(3): 180-187.
  7. Batchelor PE, Kerr NF, Gatt AM, et al. Hypothermia prior to decompression: buying time for treatment of acute spinal cord injury. J Neurotrauma 2010; 27(8): 1357-1368.
  8. Young W. Benefits and risks of decompressing spinal cords, http://sci.rutgers.edu/index.php?page=viewarticle&afile=26_July_2002@Decompression.html [Accessed December 2, 2009].
  9. Bohlmann HH, Anderson PA. Anterior decompression and arthrodesis of the cervical spine: long-term motor improvement. Part 1 – improvement in incomplete traumatic quadriparesis. J Bone Joint Surg Am 1992; 74(5): 671-682.
  10. Bohlmann HH, Anderson PA. Anterior decompression and arthrodesis of the cervical spine: long-term motor improvement. Part 2 – improvement in complete traumatic quadriplegia. J Bone Joint Surg Am 1992; 74(5): 683-692.

HYPOTHERMIC APPROACHES

  1. Cappuccino A, Bisson LJ, Carpenter B, et al. The use of systemic hypothermia for the treatment of an acute cervical spinal cord injury in a professional football player. Spine (Phila Pa 1976) 2010; 35(2); E57-62.
  2. Martinez-Arizala A, Green BA. Hypothermia in spinal cord injury. J Neurotrauma 1992; 9: S497-S505.
  3. Inamusu J, Nakamura Y, Ichikizaki K. Induced hypothermia in experimental traumatic spinal cord injury: an update. J Neurol Sci 2003; 209(1-2): 55-60.
  4. Guest JD, Dietrich WD. Spinal cord ischemia and trauma. In Tisherman SA, Sterz F, ed. Therapeutic Hypothermia. New York, NY: Springer; 2005.
  5. Dietrich WD. Therapeutic hypothermia for spinal cord injury. Crit Care Med 2009; 37(7 suppl): S238-242.
  6. Marion D, Bullock MR. Current and future role of therapeutic hypothermia. J Neurotrauma 2009; 26(3): 455-467.
  7. Acosta-Rua G. Treatment of traumatic paraplegic patients by localized cooling of the spinal cord. J Iowa Med Soc 1970; 60(5): 326-328.
  8. Demian YK, White RJ, Yashon D, et al. Anaesthesia for laminectomy and localized cord cooling in acute cervical spine injury. Brit J Anaesth 1971; 43: 973-979.
  9. Selker RG. Icewater irrigation of the spinal cord. Surg Forum 1971; 22: 411-413.
  10. Koons DD, Gildenberg PL, Dohn DF, et al. Local hypothermia in the treatment of spinal cord injuries. Cleve Clinic Q 1972; 39(3): 109-117.
  11. Meacham WF, McPherson WF. Local hypothermia in the treatment of acute injuries of the spinal cord. South Med J 1973; 66(1): 95-97.
  12. Negrin J. Spinal cord hypothermia: Neurosurgical management of immediate and delayed post-traumatic neurologic sequelae. NY State J Med 1975; 75(13): 2387-2392.
  13. Tator CH. Spinal cord cooling and irrigation for treatment of acute cord injury. In Popp AJ, ed. Neural Trauma. New York, NY:  Raven Press; 1979: 363-370.
  14. Bricola A, Dalle Ore G, Da Pian R, et al. Local cooling in spinal cord injury. Surg Neurol 1976; 6(2): 101-106.
  15. Hansebout RR, Tanner JA, Romero-Sierra C. Current status of spinal cord cooling in the treatment of acute spinal cord injury. Spine 1984; 9(5): 508-511.
  16. The Project. 2007: 19.
  17. Levi AD, Green BA, Wang MY, et al. Clinical application of modest hypothermia after spinal cord injury. J Neurotrauma 2009; 26: 407-415.
  18. Levi AD, Casella G, Green BA, et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 2010; 66(4); 670-677.
  19. Dididze M, Green BA, Dalton Dietrich W, et al. Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 2013; 51(5): 395-400.
  20. Dalton WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009; 26: 301-312

PHARMACEUTICAL APPROACHES FOR CHRONIC SCI

  1. Waxman SG. Aminopyridines and the treatment of spinal cord injury. J Neurotrauma 1993; 10(1): 19-24.
  2. Hayes KC. Fampridine-SR for multiple sclerosis and spinal cord injury. Expert Rev Neurother 2007; 7(5): 453-461.
  3. Blight AR, Henney HR 3rd, Pharmacokinetics of14C-radioactivity after oral intake of a single dose of 14C-labeled fampridine (4-aminopyridine) in healthy volunteers.Clin Ther 2009; 31(2): 328-335.
  4. Schwam E. Severe accidental overdose of 4-aminopyridine due to compounding pharmacy error. J Emerg Med 2009. [Epub ahead of print].  
  5. Hansebout RR, Blight AR, Fawcett S, et al. 4-aminopyridine in chronic spinal cord injury: A controlled, double-blind, crossover study in eight patients. J Neurotrauma 1993; 10(1): 1-18.
  6. Hayes KC, Potter PJ, Wolfe DL, et al. 4-aminopyridine-sensitive neurological deficits in patients with spinal cord injury. J Neurotrauma 1994; 11(4): 433-446.
  7. Segal JL, Brunnemann SR. 4-aminopyridine improves pulmonary function in quadriplegic humans with longstanding spinal cord injury. Pharmacotherapy 1997; 17(3): 415-423.
  8. Potter PJ, Hayes KC, Hsieh JTC, et al. Sustained improvements in neurological function in spinal cord injured patients treated with oral 4-aminopyridine: three cases. Spinal Cord 1998; 36(3): 147-155.
  9. Potter PJ, Hayes KC, Segal JL, et al. Randomized double-blind crossover trial of fampridine-sr (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma 1998; 15(10): 837-849.
  10. Segal JL, Brunnemann SR, 4-aminopyridine alters gait characteristics and enhances locomotion in spinal cord injured humans. J Spinal Cord Med 1998; 21(3): 200-204.
  11. Segal JL, Pathak MS, Hernandez JP, et al. Safety and efficacy of 4-amino pyridine in humans with spinal cord injury: A long-term, controlled trial. Pharmacotherapy 1999; 19(6): 713-723.
  12. van der Bruggen MAM, Huisman HBM, Beckerman H, et al. Randomized trial of 4-aminopyridine in patients with chronic incomplete spinal cord injury, J Neurol 2001; 8(8): 665-671.
  13. Segal JL, Warner AL, Brunnemann SR, et al. 4-aminopyridine influences heart rate variability in long-standing spinal cord injury. Am J Ther 2001; 9(1): 29-33.
  14. Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G, et al, Efficacy and safety of 4-aminopyridine in patients with long-term spinal cord injury: A randomized, double-blind, placebo-controlled trial. Pharmacotherapy 2003; 23(7): 823-834.
  15. Hayes KC, Potter PJ, Hsieh JT, et al. Pharmacokinetics and safety of multiple oral doses of sustained-release 4-aminopyridine (fampridine-sr) in subjects with chronic, incomplete spinal cord injury. Arch Phys Med Rehabil 2004; 85(1): 29-34.
  16. Cardenas DD, Ditunno J, Graziani V, et al. Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord 2007; 45: 158-168.
  17. Segal JL, Thompson JF, Tayek JA. Effects of long-term 4-aminopyridine therapy on glucose tolerance and glucokinetics in patients with spinal cord injury. Pharmacotherapy 2007; 27(6): 789-792.
  18. Grijalva I, Guizar-Sahagun G, Rodriguez-Pacheco D, et al. Gastric emptying effect by 4-aminopyridine in patients with chronic spinal cord injury. Arch Med Res 2007; 38(4): 392-397.
  19. Combination Therapy with Dalfampridine and Locomotor Training for Chronic, Motor Incomplete Spinal Cord Injury. http://www.clinicaltrials.gov/ct2/show/NCT01621113?term=4+aminopyridine+and+spinal+cord+injury&rank=1 [accessed May 7, 2013].
  20. HP184 in Chronic Spinal Cord Injury Subjects. http://www.clinicaltrials.gov/ct2/show/NCT00093275?term=HP184&rank=1 [accessed December 4, 2009].
  21. Goshgarian HG. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol 2003; 94(2): 795-810.
  22. Goshgarian HG. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir Physiol Neurobiol 2009; 169(2): 85-93.
  23. Breathing Research Related to Spinal Cord Injuries, http://www.med.wayne.edu/anatomy/goshgarians.  
  24. Bascom AT, Lattin CD, Aboussouan LS, et al. Effect of acute aminophylline administration on diaphragm function in high cervical tetraplegia. Chest 2005; 127(2): 658-661.
  25. Tzelepis GE, Bascom AT, Safwan Badr M, et al. Effect of theophylline on pulmonary function in patients with traumatic tetraplegia. J Spinal Cord Med 2006; 29(3): 227-233.
  26. Safety and Pharmockinetic Study of Oral Lithium in Patients with Chronic Spinal Cord Injury. . www.clinicaltrials.gov/ct/show/NCT00431171?order=1 [Accessed November 17. 2007].
  27. Young W. Newsletter Rutgers W.M. Keck Center for Collaborative Neuroscience, April 16, 2009.
  28. Wong YW, Tam S., So KF, et al. A three-month, open-lable, single-arm trial evaluating the safety and pharmacokinetics of oral lithium in patients with chronic spinal cord injury. Spinal Cord 2010 June 8. [Epub ahead of print].
  29. Young W. Update of the SCINetUSA Status. http://sci.rutgers.edu/forum/showthread.php?t=117784&page=19 [Accessed December 4, 2009].
  30. Young W. Newsletter Rutgers W.M. Keck Center for Collaborative Neuroscience, June 2010.
  31. Yang ML, Li JJ, So KF, et al. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 2012; 50(2): 141-146.
  32. Yick LW, So KF, Cheung PT, et al. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury. J Neurotrauma 2004; 21(7): 932-943.
  33. Su H, Chu TH, Wu W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neuro 2007; 206(2): 296-307.
  34. Fornai F, Longone P, Cafaro L, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Nat Acad Sci 2008; 105(6): 2052-2057.
  35. Wu J-C, Huang W-C, Tsai Y-A, et al. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary phase I clinical study. J Neurosurg Spine 2008; 8(3): 208-214.
  36. Wu JC, Huang WC, Chen YC, et al. Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg Spine 2011; 15(3): 216-227.

 

PHARMACEUTICAL APPROACHES FOR ACUTE SCI

  1. Bracken MP, Shepherd MJ, Collins WF, et al. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N Engl J Med 1990; 322(20), 1405-1411.
  2. Bracken MP, Shepherd MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mezylate for 48 hours in the treatment of acute spinal cord injury. JAMA 1997; 277(20): 1597-1604.
  3. Nesathurai S. Steroids and spinal cord injury: Revisiting the NASCIS 2 and NASCI 3 trials. J Trauma 1998; 45(6): 1088-1093.
  4. Short DJ, El Masry WS, Jones PW. High dose methylprednisolone in the management of acute spinal cord injury – a systematic review from a clinical perspective. Spinal Cord, 2000; 38(5): 273-286.
  5. Coleman WP, Benzel D, Cahill DW, et al. A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord 2000; 13(3): 185-199.
  6. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg 2000; 93(1 suppl): 1-7.
  7. Qian T, Campagnola D, Kirshblum S. High dose methylprednisolone may do more harm for spinal cord injury. Med Hypothesis 2000; 55(5): 452-453.
  8. Qian T, Guo X, Levi AD, et al. High dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 2005; 43(4): 199-203.
  9. Wu Y, Hou J, Collier L, et al. The administration of high-dose methylprednisolone for 24h reduced muscle size and increased atrophy-related gene expression in spinal cord-injured rats. Spinal Cord 2011; 49: 867-873.
  10. Ito Y, Sugimoto Y, Tomioka M, et al. Does high-dose methylprednisolone sodium succinate really improve neurological status in patient with acute cervical cord injury? A prospective study about neurological recovery and early complications. Spine 2009; 34(2): 2121-2124.
  11. Aomar Millan M, Cortinas Saenz M, Delgado Tapea J, et al. Rev Esp Anestesiol Reanim 2011; 58(10): 583-588.
  12. Felleiter P, Muller N, Schumann F, et al. Changes in the use of methylprednisolone protocol for traumatic spinal cord injury in Switzerland. Spine (Phila Pa 1976) 2012; 37(11): 953-956.
  13. Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury – A randomized placebo-controlled trial with GM-1 ganglioside. N Eng J Med 1991; 324(26): 1829-1839.
  14. Geisler FH, Coleman WP, Grieco G, et al. The Sygen multicenter acute spinal cord injury study. Spine 2001; 26(24S): S87-98.
  15. Pitts LH, Ross A, Chase GA, et al. Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 1995; 12(3): 235-243.
  16. Steeves J, Fawcett J, Tuszynski M. Report of international clinical trials workshop in spinal cord injury February 20-21, 2004, Vancouver, Canada. Spinal Cord 2004; 42(10): 591-597.
  17. Middlemiss P, Imitiaz M, Jiang S, et al. The synthetic purine AIT enhances recovery after acute spinal cord crush injury in rats. Soc Neurosci Abstr 1999; 25: 1002.
  18. Jiang S, Khan MI, Middlemiss PJ, et al. AIT-082 and methylprednisolone singly, but not in combination, enhance functional and histological improvement after acute spinal cord injury in rats. Int J Immunopathol Pharmacol 2004; 17(3): 353-356.
  19. Wells JE, Hurlbert RJ, Fehlings MG, et al. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 2003;  126(7): 1628-1637.
  20. Teng YD, Choi H, Onario RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci 2004; 101(9): 3071-3076.
  21. Lee SM, Yune TY, Kim SJ, et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 2003; 20(10): 1017-1027.
  22. Jha A. Lammertse DP, Charlifue SB, et al. A review of current clinical trials for improving neurological outcomes. Spinal Cord Inj Rehabil 2006; 11(3): 86-100.
  23. Minocycline and Perfusion Pressure Augmentation in Acute Spinal Cord Injury http://www.clinicaltrials.gov/ct2/show/NCT00559494?term=minocycline+spinal+cord+injury&rank=1 [Accessed November 6, 2009].
  24. Casha S, Zygun D, McGowan MD, et al. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 2012; 135(PT 4): 1224-1236.
  25. Madsen JR, MacDonald P, Irwin N, et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp Neurol 1998; 154(2): 673-683.
  26. Bavetta S, Hamlyn PJ, Burnstock G, et al. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Exp Neurol 1999; 158(2): 382-393.
  27. Nottingham S, Knapp P, Springer J. FK506 treatment inhibits caspase-3 activation and promotes oligodendroglial survival following traumatic spinal cord injury. Exp Neurol 2002; 177(1): 242-251.
  28. Lopez-Vales R, Garcia-Alias G, Fores J, et al. FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat. J Neurosci Res 2005; 81(6): 827-836.
  29. Fehlings MG, Theodore N, Harrop J, et al. Results of the cethrin phase I/IIa prospective clinical trial of a rho inhibitor for the treatment of acute spinal cord injury. 75th Annual Meeting of the American Association of Neurological Surgeons (AANS) in Washington, DC, USA, April 16, 2007.
  30. Cethrin®, a Rho Inhibitor. http://www.alseres.com/product-pipeline/product-candidates/cethrin.asp [Accessed December 7, 2009].
  31. Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated rho in apoptosis in the central nervous system. J Cell Biology 2003; 162(2): 233-243.
  32. Fehlings MG, Theodore N, Harrop J, et al. A phase I/II clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrama 2011; 28(5): 787-796.
  33. Safety and Efficacy of Cethrin® in Adult Subjects With Acute Cervical Spinal Cord Injury. http://www.clinicaltrials.gov/ct2/show/NCT00610337?term=cethrin&rank=1 [Accessed December 7, 2009].
  34. Pannu R, Barbosa E. Singh, A, et al. Attenuation of acute inflammatory response by atorvastin after spinal cord injury in rats. J Neurosci Res 2005; 79(3): 340-350.
  35. Pannu R, Christie DK, Barbosa E. et al. Post-trauma lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 2007; 101: 182-200.
  36. Dery MA, Rosseau G, Benderdour M, et al. Atorvastatin prevents early apoptosis after thoracic spinal cord contusion injury and promotes locomotion recovery. Neurosci Lett 2009; 453(1): 73-76.
  37. Brines M, Cerami A. Erythropoietin in spinal cord injury. In Hoke A, ed. Erythropoietin and the Nervous System: Novel Therapeutic Options for Neuroprotection. New York, NY: Springer; 2006: 147-164.
  38. Matis GK, Birbilis TA. Erythropoietin in spinal cord injury. Eur Spine J 2009; 18(3): 314-323.
  39. Yazihan N, Uzuner K, Salman B, et al. Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 2008; 39(12): 1408-1413.
  40. Kontogeorgakos VA, Voulgaris S, Korompilias AV, et al. The efficacy of erythropoietin on acute spinal cord injury. An experimental study on a rat model. Arch Orthop Trauma Surg 2009; 129(2): 189-194.
  41. Fang XQ, Fang M, Fan SW, et al. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-β. Chin Med J 2009; 122(14); 1631-1635.
  42. Smith PD, Puskas F, Fullerton DA, et al. Attenuation of spinal cord ischemia and reperfusion by erythropoietin. J Thorac Cardiovasc Surg 2011; 141(1); 256-260.
  43. Evaluation of the tolerability and the efficacy of erythropoietin (EPO) treatment in spinal shock: comparative study vs methylprednisolone (MP). http://clinicaltrials.gov
  44. Maddox S. The Quest for Cure.  Washington, D.C.: Paralyzed Veterans of America; 1993: 95-98.
  45. Mullner A, Gonzenbach RR, Weinmann O, et al. Lamina-specific restoration of serotonergic projections after Nogo-A antibody treatment of spinal cord injury in rats. Eur J Neurosci 2008; 27(2): 326-333.
  46. Freund P, Schmidlin E, Wannier T, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 2006; 12(7): 790-792.
  47. Freund P, Schmidlin E, Wannier T, et al. Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates – re-examination and extension of behavioral data. Eur J Neurosci 2009 ; 29(5) : 983-996.
  48. Maier IC, Ichiyama RM, Courtine G, et al. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 2009 ; 132(Pt 6) : 1426-1440.
  49. Gonzenbach RR, Gasser P, Zorner B, et al. Nogo-A antibodies and training reduce Muscle spasms in spinal cord-injured rats. Ann Neurol 2010 ; 66(1) : 48-57.
  50. Clinical trials with anti-Nogo-antibodies. http://www.forschungsportal.ch/unizh/p9471.htm [Accessed December 8, 2009].
  51. Fu Q, Hue J, Li S. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci 2007; 27(15): 4154-4164.
  52. Wang X, Budel S, Baugman K, et al. Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma 2009; 26: 81-95.
  53. Safety of riluzole in patients with acute spinal cord injury.  http://clinicaltrials.gov/ct2/show/NCT00876889?term=riluzole&rank=7 [Accessed March 15, 2010].
  54. Stutzmann JM, Pratt J, Boraud T, et al. The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport 1996; 7(2): 387-392.
  55. Mu X, Azbill RD, Springer JE. Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 2000; 17(9): 773-780.
  56. Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 2001; 94(2 Suppl): 245-256.
  57. Schwartz G, Fehlings MG. Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002; 137: 177-190.
  58. Ates O, Cayli SR, Gurses I, et al. Comparative neuroprotective effect of sodium channel blockers after experimental spinal cord injury. J Clin Neurosci 2007; 14: 658-665.
  59. Kitzman PH. Effectiveness of riluzole in surpressing spasticity in the spinal cord injured rat. Neurosci Lett 2009; 455, 150-153.
  60. Paclitaxel, http://en.wikipedia.org/wiki/Paclitaxel [Accessed September 15, 2011].
  61. Microtubules – The Cell – NCBI Bookshelf, http://www.ncbi.nlm.nih.gov/books/NBK9932/ [Accessed September 19, 2011].
  62. Erturk A, Hellal F, Enes J, et al. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 2007; 27(34): 9169-9180.
  63. Witte H, Neukirchen D, Bradke F. Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 2008; 180(3): 619-632.
  64. Hellal F, Hurtado A, Ruschel J, et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 2011; 331(6019); 928-931.

 

HORMONES

  1. Li Y, Jiang DH, Wang ML, et al. Rhythms of serum melatonin in patients with spinal lesions at the cervical, thoracic or lumbar region. Clin Endocrinol 1989; 30(1): 47-56.
  2. Zeitzer JM, Ayas NT, Shea SA, et al. Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia. J Clin Endocrinol Metab 2000; 85: 2189-2196.
  3. Scheer, FAJL, Zeitzer, Ayas NT et al. Reduced sleep efficiency in cervical spinal cord injury; association with abolished night time melatonin secretion. Spinal Cord 2006. 44; 78-81.
  4. Verheggen RJ, Jones H, Nakayiru J, et al. Complete absence of evening melatonin increase in tetraplegics. FASEB J 2012; 26(7): 3059-64.
  5. Fujimoto T, Nakamura T, Ikeda T, et al. Potent protective effects of melatonin on experimental spinal cord injury. Spine 2000; 25(7): 769-775.
  6. Erten SF, Kocak A, Ozdemir I, et al. Protective effect of melatonin on experimental spinal cord ischemia. Spinal Cord 2003; 41, 533-538.
  7. Liu JB, Tang TS, Yang HL, et al. Antioxidation of melatonin against spinal cord injury in rats. Chin Med J 2004; 117(4): 571-575.
  8. Genovese T, Mazzon E, Muia C, et al. Attenuation in the evolution of experimental spinal cord trauma by treatment with melatonin. J Pineal Res 2005; 38: 198-208.
  9. Cayli, SR, Kocak A, Yilmaz U, et al. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J 2004; 13: 724-732.
  10. Ates O, Cayli S, Gurses I, et al. Does pinealectomy affect the recovery rate after spinal cord injury? Neurol Res 2007; 29(6): 533-539.
  11. Ersahin M, Ozdemir Z, Ozsavci D, et al.  Melatonin treatment treatment protects against spinal cord injury induced functional and biochemical changes in rat urinary bladder. J Pineal Res 2012; 52(3): 340-348.
  12. Park S. Lee SK, Park K, et al. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 2012; 52(1): 107-119.
  13. Park K, Lee Y, Park S, et al. Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J Pineal Res 2010; 48(3): 270-281.
  14. Hess RA. Estrogen in the adult male reproductive tract: a review. Reprod Biol Endocrinol 2003; 1: 52.
  15. Sribnick EA, Samantaray S, Das A, et al. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 2010; 88; 1738-1750.
  16. Samantaray S, Sribnick EA, Das A, et al. Neuroprotective efficacy of estrogen in experimental spinal cord injury. Ann NY Acad Sci 2010; 1199: 90-94.
  17. Sribnick EA, Del Re AM, Ray SK, et al. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels. Brain Res 2009; 1276: 159-170.
  18. Sribnick EA, Wingrave JM, Matzelle DD, et al. Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J Neurosci Res 2005; 82: 283-293.
  19. Sribnick EA, Wingrave JM, Matzelle DD, et al. Estrogen as a neuroprotective agent in the treatment of spinal cord injury. Ann NY Acad Sci 2003; 993: 125-133.
  20. Grosswasser Z, Cohen M, Karen O. Female TBI patients recover better than males. Brain Inj 1998; 12(9): 805-808.
  21. Bayir H, Marion DW, Puccio AM, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma 2004. 21(1): 1-8.
  22. Thomas AJ, Nockels RP, Pan HQ, et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 1999, 24(20): 2134-2138.
  23. di Michele F, Lekieffre D, Pasini A, et al. Increased neurosteroid synthesis after brain and spinal cord injury in rats. Neurosci Lett 2000; 284(1-2): 65-68.
  24. Labombarda F, Gonzalez S, Roig P, et al. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Biol 2000; 73(3-4): 159-169.
  25. Labombarda F, Gonzalez SL, Gonzalez DM, et al. Cellular basis for progesterone neuroprotection. J Neurotrauma 2002; 19(3): 343-355.
  26. Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, et al. Basis of progesterone protection in spinal cord neurodegeneration. J Steroid Biochem Biol 2002; 83(1-5): 199-209.
  27. De Nicola AF, Labombarda F, Gonzalez SL, et al. Steroid effects on glial cells: detrimental or protective for spinal cord function? Ann N Y Acad Sci 2003; 1007: 317-328.
  28. Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, et al. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 2004; 125(3): 605-614.
  29. Baker KA, Hagg T. An adult rat spinal cord contusion model of sensory axon degeneration: the estrus cycle or a preconditioning lsion do not affect outcome. J Neurotrauma 2005; 22(4): 415-428.
  30. Gonzalez SL, Labombarda F, Deniselle MC, et al.  Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Biol 2005; 94(1-3): 143-149.
  31. De Nicola AF, Gonzalez SL, Labombarda F, et al. Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Mol Neurosci 2006; 28(1): 3-15.
  32. Wojtal K, Trojnar MK, Czuczwar AJ. Endogenous neuroprotective factors; neurosteroids. Pharmacol Rep 2006; 58(3): 335-340.
  33. Labombarda F, Pianos A, Liere P, et al. Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 2006; 147(4): 1847-1859.
  34. Labombarda F, Gonzalez S, Gonzalez Deniselle MC, et al. Progesterone increases the expression of myelin basic protein and the number of cells chowing NG2 immunostaining in the lesioned spinal cord. J Neurotrauma 2006; 23(2): 181-192.
  35. Fee DB, Swartz KR, Joy KM, et al. Effects of progesterone on experimental spinal cord injury. Brain Res 2007; 1137(1): 146-152.
  36. Schumacher M, Guennoun R, Stein DG, et al. Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116(1): 77-106.
  37. Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007; 49(4): 391-402.
  38. Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 2008; 12(2): R61.
  39. Stein DG, Wright DW, Kellermann Al. Does progesterone have neuroprotective properties? Ann Emerg Med 2008; 51(2): 164-172.
  40. De Nicola AF, Labombarda F, Gonzalez Deniselle MC, et al. Progesteone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30(2): 173-187.
  41. Gonzalez SL, Lopez-Costa JJ, Labombarda F, et al. Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury. Cell Mol Neurobiol 2009; 29(1): 27-39.
  42. Labombarda F, Gonzalez SL, Lima A, et al. Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 2009; 57(8): 884-897,
  43. Labombarda F, Meffre D, Delespierre B, et al. Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience 2010: 94-106.
  44. Labombarda F, Gonzalez Deniselle MC, De Nicola AF, et al. Progesterone and the spinal cord: good friends in bad times. Neuroimmunomodulation 2010; 17(3): 146-149.
  45. Vergel N. Testosterone: A Man’s Guide, Houston, TX: Milestones Publishing, 2010.
  46. Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury; organ interactions. Ann NY Acad Sci 2010; 1211: 66-84.
  47. Bauman WA, Cirnigliaro CM, LaFountaine MF, et al. A small-scale clinical trial to determine the safety and efficacy of testosterone replacement therapy in hypogonadal men with spinal cord injury. Horm Metab Res 2011; 43(8): 574-579.
  48. Kosovski E, Iversen PO, Birkeland K, et al. Decreased levels of testosterone and gonadotrophins in men with long-standing tetraplegia. Spinal Cord 2008; 46: 559-564.
  49. Celik B, Sahin A, Caglar N, et al. Sex hormone levels and functional outcomes; Am J Phys Med Rehabil 2008; 86(10): 784-790.
  50. Clark MJ, Schopp LH, Mazurek MO, et al. Testosterone levels among men with spinal cord injury. Am J Phys Med Rehabil 2008; 87(9): 758-764.
  51. Clark MJ, Petroski GF, Mazurek MO, et al. Testosterone replacement therapy and motor function in men with spinal cord injury. Am J Phys Med Rehabil 2008; 87(4): 281-284.
  52. Schopp LH, Clark M, Mazurek MO, et al. Testosterone levels among men with spinal cord injury admitted to inpatient rehabilitation. Am J Phys Med Rehabil 2006; 85(8): 678-684.
  53. Bialek M, Zaremba P, Borowicz KK, et al. Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol 2004; 56(5): 509-518.
  54. Safarinejad MR, Level of injury and hormone profiles in spinal cord-injured men. Urology 2001; 58(5): 671-676.
  55. Tsitouras PD, Zhong Y.G., Spungen AM, et al. Serum testosterone and growth hormone/insulin-like growth factor-I in adults with spinal cord injury. Horm Metab Res 1995; 27: 287-292.
  56. Brackett NL, Lynne CM, Weizman MS, et al. Endocrine profiles and semen quality of spinal cord injured men. J Urol 1994; 151(1): 114-119.
  57. Wang YH, Huang TS, Lien IN. Hormone changes in men with spinal cord injuries. Am J Phys Med Rehabil 1992; 71(6): 328-332.
  58. Phelps G, Brown M, Chen J, et al. Sexual experience and plasma testosterone levels in male veterans after spinal cord injury. Arch Phys Med Rehabil 1983: 47-52.
  59. Lee JY, Chung H, Yoo YS, et al. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology 2010; 151(8): 3815-3826.
  60. Ersahin M, Toklu HZ, Erzik C, et al. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects. Turk Neurosurg 2011; 21(4): 599-605.
  61. Zhang Q, Huang C, Meng B, et al. Acute effect of ghrelin on ischemia/reperfusion injury in the rat spinal cord. Int J Mol Sci 2012; 13(8): 9864-9876.

 

IMMUNOLOGICAL APPROACHES

  1. Proneuron, Biotechnologies, www.proneuron.com.
  2. Knoller N, Auerbach G, Fulga V, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: Phase I study results. J Neurosurg Spine 2005; 3(3): 173-181.
  3. Autologous incubated macrophages for patients with complete spinal cord injuries.  http://clinicaltrials.gov/ct2/show/NCT00073853?term=proneuron&rank=1 [Acecssed August 4, 2006].
  4. Knoller N, Auerbach G, Fulga V, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: Phase I study results. J Neurosurg Spine 2005; 3(3): 173-181.
  5. Lammerste D, Jones L, Charlifue S, et al. Autologous incubated macrophage treatment in complete SCI: Results of the multicenter trial. J Spinal Cord Med 2009; 32(4): 449-450.
  6. Lammerste D, Jones L, Charlifue S, et al. Autologous incubated macrophage treatment in acute complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 2012; 50(9): 661-671.

 

ELECTROMAGNETIC THERAPIES

  1. Johnston L. Diapulse® electromagnetic therapy for SCI. PN/Paraplegia News, July 2003: 27-29.
  2. Erdman WJ. Peripheral blood flow measurements during application of pulsed high frequency currents, Am J Ortho 1960; 2: 196-197.
  3. Wilson DH, Jagadeesh P. Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field. Paraplegia 1976; 14: 12-20.
  4. Young W, Koreh I, Ransohoff J.  Pulsed electromagnetic fields alter tissue calcium accumulation, Presentation to American Paralysis Association 1983 Workshop.
  5. Young W. Pulsed electromagnetic fields alter calcium in spinal cord injury. Presentation to the 75th Meeting of the Society of Neurological Surgeons, New York, April 25-28, 1984.
  6. Young W. Pulsed electromagnetic fields (diapulse) alter calcium in spinal cord injury, Presentation to American Paralysis Association Meeting, San Francisco, CA. May 20, 1984.
  7. Kiwerski J, Chrostowska T, Weiss, M. Clinical trials of the application of pulsating electromagnetic energy (diapulse) in the treatment of spinal cord lesions. Narz Ortoped, Pol 1980; 45(3): 273-277.
  8. Ellis W, Pulsed subcutaneous electrical stimulation in spinal cord injury. Bioelectromagnetics 1987; 8(2): 159-164.
  9. Salzberg CA, Cooper-Vastola SA, Perez FJ, et al. The effects of non-thermal pulsed electromagnetic energy (diapulse) on wound healing of pressure ulcers in spinal cord-injured patients: A randomized, double-blind study. Wounds 1995; 7(1): 11-16.
  10. Readers Respond. PN/Paraplegia News, September 2003.
  11. Borgens RB, Toombs JP, Blight AR, et al. Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restorative Neurol Neurosci 1993; 5: 305-322.
  12. Borgens RB, Toombs JP, Breur G, et al. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegia dogs. J Neurotrauma 1999; 16(7): 639-699.
  13. Shapiro S, Borgens R, Pascuzzi R. et al. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2005; 2: 3-10.
  14. Poirrier AL, Nyssen Y, Scholtes F, et al. Repetitive transcranial magnetic stimulation improves open field locomotor recovery after low but not high thoracic spinal compression-injuries in adult rats. J Neurosci Res 2004; 75(2): 253-261.
  15. Belci M, Catley M, Husain M, et al. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients. Spinal Cord 2004; 42(7): 417-419.
  16. Bunday KL, Perez MA. Motor Recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol 2012; 22(24): 2355-2361.
  17. Nerve Stimulation May Restore Hand Function After Spinal Injury,  http://health.usnews.com/health-news/news/articles/2012/11/29/nerve-stimulation-may-restore-hand-function-after-spinal-injury [Accessed February 13, 2013].
  18. Magnetic Molecular Energizer (MME), http://www.amri-intl.com/home.html [Accessed July 21, 2009].
  19. Magnetic Molecular Energizer, http://www.healing-arts.org/children/cp/cpmagnetic.htm  [Accessed July 21, 2009].
  20. Nichols TW, Pearce LA, Stokesbary DL, et al Clinical Observations on magnetic molecular energizer on multiple sclerosis patients. http://www.heartfixer.com/AMRI/AMRI%20-%20MME%20Abstracts.htm#Abstract One - CLINICAL OBSERVATIONS ON MAGNETIC MOLECULAR ENERGIZER ON MULTIPLE SCLEROSIS PATIENTS [Accessed July 21, 2009].
  21. Magnetic Molecular Energizer, http://sci.rutgers.edu/forum/showthread.php?t+104011,  [Accessed July 21, 2009].

HYPERBARIC OXYGEN THERAPY

  1. Young W. Hyperbaric oxygenation therapy,    http://sci.rutgers.edu/index.php?page=viewarticle&afile=23_October_2001@HBOT2001.htm [Accessed July 17, 2005].  
  2. Yeo J. Preliminary report on ten patients with spinal cord injuries treated with hyperbaric oxygen. Med J Aust 1978: 2(12): 572-573.
  3. Yeo JD. The use of hyperbaric oxygen to modify the effects of recent contusion injury to the spinal cord. Cent Nerv Syst Trauma 1984; 1(2): 161-165.
  4. Jones RF, Unsworth IP, Marosszeky JE. Hyperbaric oxygen and acute spinal cord injuries in humans. Med J Aust 1978: 2(12): 573-575.
  5. Gamache FW, Roy AM, Drucker TB, et al. The clinical application of hyperbaric oxygen therapy in spinal cord injury: A preliminary report. Surg Neurol 1981; 15(2): 85-87.
  6. Elinskii MP, Rafikov AM, Baibus GN. Therapeutic use of hyperbaric oxygenation in lesions of the spinal cord. Zh Neropatol Psikhiatry Im  S S Korsakova 1984; 84(5): 682-687.
  7. Asamoto S, Sugiyama H, Doi H, et al. Hyperbaric oxygen (HBO) therapy for acute traumatic cervical spinal cord injury.  Spinal Cord 2000; 38(9): 538-540.
  8. HBO Therapy for Spinal Cord Injury, www.spinalrehab.com.au/disorders/SpinalCordInjury.htm [Accessed July 17, 2005].
  9. Chen CF, Yang YJ, Wang QH, et al. Effect of hyperbaric oxygen administered at different pressures and different exposure time on differentiation of neural stem cells in vitro. Zhongguo Dang Dai Er Ke Za Zhi 2010; 12(5): 368-372.
  10. Yang YJ, Wang XL, Yu XH, et al. Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemia brain damage in neonatal rats. Undersea Hyperb Med 2008; 35(2): 113-129.
  11. Wang XL, Yang YJ, Xie M, et al. Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic ischemia brain damage. Zhongguo Dang Dai Er Ke Za Zhi 2009; 11(9): 749-752.
  12. Pan HC, Chin CS, Yang DY, et al., Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem Res 2009. 34(7) 1304-1316.
  13. Shyu KG, Hung HF, Wang BW, et al. Hyperbaric oxygen induces placental growth factor expression in bone marrow-derived mesenchymal stem cells. Life Sci 2008; 83(1-2): 65-73.
  14. Thom SR, Bhopale VM, Velazquez OC, et al. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart & Circ Physiol 2006; 290(4): 1378-1386.

INTERMITTENT HYPOXIA

  1. Trumbower RD, Jayaraman A, Mitchell GS, et al. Exposure to acute intermittent hpoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair 2012; 26(2): 163-172.

  2. Hayes HB, Jayaraman A, Herrmann M, et al. Daily intermittent hypoxia enhances walking after chronic spinal cord injury. Neurology 2013 Nov 27 [Epub ahead of print].

  3. New Treatment ‘could help spine injury patients’ walk again. http://www.medicalnewstoday.com/articles/269364.php [Accessed November 29, 2013].

AGGRESSIVE PHYSICAL REHABILITATION

  1. Giger MD Therapy, www.gigermd.com [Accessed October 11, 2005].
  2. Hocomo, www.hocoma.com [Accessed December 9, 2009].
  3. Neuro Institute, www.theneuroinstitute.com [Accessed October 15, 2005].
  4. Goldsmith HS, Fonseca A, Porter J. Spinal cord separation: MRI evidence of healing after omentum-collagen reconstruction. Neurol Res 2005; 27(2): 115-123.
  5. Project Walk, www.projectwalk.org [Accessed December 9, 2009].  
  6. Harness ET, N Yosbatiran N, Cramer SC. Effects of intense exercise in chronic spinal cord injury. Spinal Cord 2008; 46: 733-737.
  7. Coordination Dynamic Therapy, www.cdt.host.sk [Accessed February 24, 2005].  
  8. Schalow G. Recovery from spinal cord injury achieved by 3 months of coordination dynamic therapy. Electromyogr Clin Neurophysiol 2002; 42: 367-376.
  9. Schalow G. Partial cure of spinal cord injury achieved by 6 to 13 months of coordination dynamic therapy. Electromyogr Clin Neurophysiol 2003; 43: 281-292.
  10. Schalow G, Jaigma P, Belle VK. Overreaching in coordination dynamics therapy in an athlete with a spinal cord injury. Electromyogr Clin Neurophysiol  48(2): 83-95.
  11. Schalow G. Stem cell therapy and coordination dynamics therapy to improve spinal cord injury. Electromyogr Clin Neurophysiol 2008; 48(5): 233-253.
  12. McDonald JW, Becker D, Sadowsky CL, et al. Late recovery following spinal cord injury.  J Neurosurg (Spine 2) 2002; 97(2 Suppl): 252-265.
  13. Shepherd Center’s Beyond Therapy Program, www.shepherd.org [Accessed December 10, 2009].
  14. Center for Spinal Cord Injury Recover, www.centerforscirecovery.org [Accessed December 10, 2009].
  15. Centro Giusti Rehabilitation Center, www.centrogiusti.it [Accessed December 10, 2009].

TREADMILL REHABILITATION PROGRAMS

  1. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992; 30(4): 229-238.
  2. Wernig A, Müller S, Nanassy A, et al. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neuroscience 1995; 7(4): 823-829.
  3. Wernig A, Nanassy A, Müller S. Laufband (LB) therapy in spinal cord lesioned persons.  Progress in Brain Research 2000; 128: 89-97.
  4. Hicks AL, Adams MM, Martin Ginis K, et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 2005; 43(5): 291-298.
  5. Giangregorio LM, Webber CE, Phillips SM, et al. Can body weight supported treadmill training increase bone mass in individuals with chronic incomplete spinal cord injury. Appl Physiol Nutr Metab 2006; 31(3): 283-291.
  6. Giangregorio LM, Hicks AL, Webber CE, et al. Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 2005; 43(11): 649-657.
  7. Dobkin B, Apple D, Barbeau H. et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 2006: 66(4): 484-493.
  8. Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005; 19(4): 313-323.
  9. Hocoma, www.hocoma.com [Accessed December 9, 2009].
  10. Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 2005; 94(4): 2844-2855.
  11. Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 2001; 82(6): 818-824.
  12. Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther 2002; 82(7): 707-715.
  13. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther 2005; 29(3): 127-137.
  14. Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 2009; 6: 36.
  15. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 2011; 91(1): 48-60.
  16. Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005; 86: 672-679.
  17. Harkema SJ, Schmidt-Read M, Lorenz DJ, et al. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil 2012; 93(9): 1508-1517.

FUNCTIONAL ELECTRICAL STIMULATION

FES Introduction

  1. Gorman PH. Functional electrical stimulation. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 733-745.
  2. National (UK) FES Clinical Trial Centre, http://www.salisburyfes.com/Clinical%20FES.htm [Accessed December 13, 2009].
  3. International FES Society, www.ifess.org [Accessed December 13, 2009].
  4. Spinal Cord Injury Information  FES, http://www.spinalcord.uab.edu/show.asp?durki=21653&site=1021&return=21838 [Accessed December 13, 2009].
  5. Spinal Cord Injury: Progress, Promise, and Priorities, Institute of Medicine, National Academy of Sciences, Washington, D.C., The National Academies Press, 2005: 126-130.
  6. Popovic MR, Curt A, Keller T. et al. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001; 39(8): 403-412.
  7. Prochazka A. Neuroprosthetics. In Field-Fote EC, ed. Spinal Cord Injury Rehabilitation. Philadelphia, PA: FA Davis Company; 2009.
  8. Popovic MR, Thrasher TA. Neuroprostheses. In Wnek GE, Bowlin GL, eds. Encyclopedia of Biomaterials and Biomedical Engineering. New York - London, Informa Health Care; 2008: 1924-1931.

 

FES Therapeutic Exercise

  1. Hunt KJ, Grant SJ, McLean AN, et al. Development of systems for tetraplegic arm cranking using functional electrical stimulation, http://fesnet.eng.gla.ac.uk/CRE/cre_arm_update.html [Accessed May 6, 2006].
  2. Hettinga DM, Andrews BJ, Wheeler GD, et al. FES-rowing for persons with spinal cord injury. 9th Annual Conference of the International FES Society, Bournemouth, UK, September 2004. http://www.ifess.org/ifess04/cycling%20and%20rowing/oral/HettingaD.pdf [Accessed May 6, 2006].
  3. Therapeutic Exercise Devices – Including FES, http://www.abledata.com/abledata.cfm?pageid=19327&top=14742&trail=22,13539 [Accessed December 13, 2009].  
  4. ABLEDATA: FES Resources, http://www.abledata.com/abledata.cfm?pageid=19327&top=13828&deep=2&trail=22,13539 [Accessed December 13, 2009].
  5. Ergys2, FES-based cycling machine with integrated seat & controls, www.ergys.com [Accessed December 13, 2009].
  6. Functional Electrical Stimulation Motorized Ergometer, www.restorative-therapies.com [Accessed December 13, 2009].
  7. Concepts 2 FES-assisted rowing, www.concept2.co.uk/birc/news.php?story=fes_at_birc.
  8.  The BerkelBike, www.berkelbike.com [Accessed December 13, 2009].

 

FES Standing/Ambulation

  1. Gorman PH. Functional electrical stimulation. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 733-745.

2. Sigmedics, Inc, www.sigmedics.com [Accessed December 13, 2009].

3. Popovic MR, Curt A, Keller T. et al. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001; 39(8): 403-412.

4. Jacobs PL, Johnson B, Mahoney ET. Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia. J Spinal Cord Med 2003; 26(4):384-389.

5. Bonaroti D, Akers J, Smith BT, et al. A comparison of FES with KAFO for providing ambulation and upright mobility in a child with complete thoracic spinal cord injury. J Spinal Cord Med 1999. 22(3): 159-166.

6. Agarwal S, Triolo RJ, Kobetic R. et al. Long-term user perceptions of an implanted neuroprothesis for exercise, standing, and transfers after spinal cord injury. J Rehabil Res Dev 2002; 40(3): 241-252.

7. Gallien P, Brissot R, Eyssette M, et al. Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia 1995; 33(11): 660-664.

8. Klose KJ, Jacobs PL, Broton JG, et al. Evaluation of a training program for persons with SCI Paraplegia using the Parastep® 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil 1997; 78(8): 789-793.

9. Jacobs PL, Nash MS, Klose KJ, et al. Evaluation of a training program for persons with SCI Paraplegia using the Parastep® 1 ambulation system: part 2. Effects on physiological responses to peak arm ergometry. Arch Phys Med Rehabil 1997; 78(8): 794-798.

10. Needham-Shropshire BM, Broton JG, Klose KJ, et al. Evaluation of a training program for persons with SCI Paraplegia using the Parastep® 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 1997; 78(8): 799-803.

11. Guest RS, Klose KJ, Needham-Shropshire BM, et al. Evaluation of a training program for persons with SCI Paraplegia using the Parastep® 1 ambulation system: part 4. Effect on physical self-concept and depression. Arch Phys Med Rehabil 1997; 78(8): 804-807.

12. Nash MS, Jacobs PL, Montalvo BM, et al. Evaluation of a training program for persons with SCI Paraplegia using the Parastep® 1 ambulation system: part 5. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training. Arch Phys Med Rehabil 1997; 78(8): 808-814.

13. Graupe D, Kohn KH. Functional Neuromuscular Stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg Neurol 1998; 50(3): 202-207.

14. Brissot R, Gallien P, Le Bot M-P. Clinical experience with functional electrical stimulation-assisted gait with Parastep in spinal cord-injured patients. Spine 2000; 25(4): 501-508.

 

FES Manual Grasping Control

1. Prochazka A. Neuroprosthetics. In Field-Fote EC, ed. Spinal Cord Injury Rehabilitation. Philadelphia, PA: FA Davis Company; 2009.

2. Popovic MR, Thrasher TA. Neuroprostheses. In Wnek GE, Bowlin GL, eds. Encyclopedia of Biomaterials and Biomedical Engineering. New York - London, Informa Health Care; 2008: 1924-1931.

3. Gorman PH. Functional electrical stimulation. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 733-745.

4. Popovic MR, Curt A, Keller T. et al. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001; 39(8): 403-412

5. Gan LS, Prochazka A, Bornes TD, et al. A new means of transcutaneous coupling for neural prostheses. IEEE Trans Biomed Eng 2007; 54(3): 509-517.

6. Ness H200 Grasping Device, http://www.bioness.com/NESS_H200_for_Hand_Rehab.php [Accessed December 13, 2009].

7. Snoek GJ, IJzerman MJ, in ‘t Groen, et al. Use of the NESS handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 2000; 38(4): 244-249.

8. Alon G, Mc Bride K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil 2003; 84(1): 119-124. 

9. Prochazka A, Gauthier M, Wieler M, et al. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil 1997; 78(6): 608-614.

10. Popovic D, Tojanovic A, Pjanovic A, et al. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil 1999; 80(3): 299-304.

11. Mangold S, Keller T, Curt A. et al. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord 2005; 43(1): 1-13.

12. Popvic D, Popovic M, Stojanoic A, et al. Clinical evaluation of the Belgrade grasping system, Proceedings of the 6th Vienna International Workshop of FES, Vienna, Austria, 1998.

13 Peckham PH, Kieth MW, Kilgore KL, et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil 2001; 82(10): 1380-1388.

14. Kilgore KL, Hart RL, Montague FW, et al. An implanted myoelectrically-controlled neuroprosthesis for upper extremity function in spinal cord injury. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 1630-1633.

15. Kilgore KL, Hoyen HA, Bryden AM, et al. An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg 2008; 33(4): 539-550.

16. STIMuGRIP Hand Grasp System by Finetech Medical, http://www.finetech-medical.co.uk/Products/HandGraspSystem/tabid/83/language/en-GB/Default.aspx [Accessed March 28, 2009].

17. Spensley J. STIMuGRIP; a new hand control implant, Conf Proc IEEE Eng Med Biol Soc 2007: 513.

 

FES Bladder & Bowel Management

1. Brindley/VocareTM, http://www.finetech-medical.co.uk .   

2. InterStimTM system, http://www.medtronic.com/your-health/overactive-bladder/device/index.htm.

3. Craggs M. Restoration of Complete Bladder Function by Neurostimulation. In Corcos J, Schick E., eds. Textbook of the Neurogenic Bladder. New York, NY: Informa HealthCare; 2003: 626-627.

4. Electrical Stimulation for the Management of Bladder and Bowel Incontinence, www.ifess.org/Services/Consumer_Ed/Incontinence.htm.

5. Shobab, L. Regaining control: treatment options for spinal cord injury bladder dysfunction. J Young Investigators 2003: 6(7). www.jyi.org/volumes/volume6/issue7/features/shobab.html.

6. Grill WM, Craggs MD, Foreman RD, et al. Emerging clinical applications of electrical stimulation: Opportunities for restoration of function. J Rehabil Res Dev 2001; 38(6): 641-653.

7. Brindley/Vocare: Surgical Questions and Answers, www.clarkmemorial.org/VOCARE.asp.

8. Kutzenberger J, Burkhard D, Sauerwein D. Spastic bladder and spinal cord injury: Seventeen years of experience with sacral deafferention and implantation of an anterior root stimulator. Artific Organs 2005; 29(3): 239-241

9. van der Aa HE, Hermens H, Alleman E., et al. Sacral anterior root stimulation for bladder control in patients with a complete lesion of the spinal cord. Acta Neurochir (Wien) 1995; 134(1-2): 88-92.

10 Vastenholt JM, Snoek GJ, Buschman HP, et al. A 7-year follow-up of sacral anterior root stimulation for bladder control in patients with a spinal cord injury: Quality of life and users’ experiences. Spinal Cord 2003; 41(7): 397-402.

FES Respiratory Support

  1. Introduction to Breathing Pacemakers. http://www.averylabs.com/breathing-pacemakers/introduction.html [Accessed December 14, 2009].
  2. DiMarco AF, Onders RP, Ignagni A, et al. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects.  Chest 2005; 127(2): 671-678.
  3. Krieger LM, Krieger AJ. The intercostal to phrenic nerve transfer: an effective means of reanimating the diaphragm in patients with high cervical spine injury. Plast Reconst Surg 2000; 105(4): 1255-1261.
  4. DiMarco AF. Neural prostheses in the respiratory system. J Rehabil Res Dev 2001; 38(6): 601-607.
  5. DiMarco AF, Onders RP, Ignagni A, et al. Insipratory muscle pacing in spinal cord injury: Case report and clinical commentary. J Spinal Cord Med 2006: 29(2): 95-108.
  6. Hirschfeld S, Exner G, Luukkaala T, et al. Mechanical ventilation or phrenic nerve stimulation for treatment of spinal cord injury-induced respiratory insufficiency. Spinal Cord 2008; 46(11): 738-742.
  7. DiMarco AF, Takaoka Y, Kowalski KE. Combined intercostal and diaphragm pacing to provide artificial ventilation in patients with tetraplegia. Arch Phys Med Rehabil 2005: 86(6): 1200-1207.
  8. Kandare F, Stanic U, Jaeger R. Functional electrical stimulation of abdominal muscles in spinal cord injury: A review and synthesis, http://ifess.org/ifess02/therapeutic_stimulation/KandareF.pdf.
  9. Taylor PN, Tromans A, Swain ID. Electrical stimulation of abdominal muscles for control of blood pressure and assisted cough, 5th IFESS meeting, Aalborg, Denmark, June 2000.  www.salisburyfes.com/july00.htm#cough.
  10. Taylor PN, Tromans AM, Harris KR, et al. Electrical stimulation of abdominal muscles for control of blood pressure and augmentation of cough in a C3/4 level tetraplegic. Spinal Cord 2002; 40(1): 34-36.
  11. Linder S. Functional electrical stimulation (FES) for cough. Ventilator-Assisted Living 1998; 12(1).
  12. Linder SH. Functional electrical stimulation to enhance cough in quadriplegia. Chest 1993; 103(1): 166-169.
  13. Blossfield KM, Jaeger R, Langbein WE. Precisely timed functional electrical stimulation for cough assistance in persons with spinal cord injury, 6th Vienna International Workshop on Functional Electrostimulation, September 1998.
  14. Spivak E. Keren O, Niv D, et al. Electromyographic signal-activated functional electrical stimulation of abdominal muscles: The effect on pulmonary function in patients with tetraplegia. Spinal Cord 2007; 45(7): 491-495.

 

EPIDURAL ELECTRICAL STIMULATION

  1. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after complete paraplegia: a case study. Lancet 2011; (377(9781): 1938-1947.
  2. McCallister P. Breakthrough therapy for SCI. PN/Paraplegia News, August 2011, 47-48.

FUNCTIONAL MAGNETIC STIMULATION

  1. Lin VW and Hsiao H. Functional magnetic stimulation. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 749-763.
  2. Lin VW, Hsiao IN, Zhu E, et al. Functional magnetic stimulation for conditioning of expiratory muscles in patients with spinal cord injury. Arch Phys Med Rehabil 2001; 82(2): 162-166.
  3. Lin VW, Kim KH, Hsiao I, et al. Functional magnetic stimulation facilitates gastric emptying. Arch Phys Med Rehabil 2002; 83(6): 806-810.
  4. Lin VW, Nino-Murcia M, Frost F, et al. Functional magnetic stimulation of the colon in persons with spinal cord injury. Arch Phys Med Rehabil 2001; 82(2) 167-173.
  5. Tsai PY, Wang CP, Chiu FY, et al. Efficacy of functional magnetic stimulation in neurogenic bowel dysfunction after spinal cord injury. J Rehabil Med 2009; 41(1): 41-47.
  6. Lin VW, Wolfe V, Frost FS, et al. Micturition by functional magnetic stimulation. J Spinal Cord Med 1997; 20(2): 218-226.
  7. Schmid DM, Curt A, Hauri D, et al. Motor evoked potentials (MEP) and evoked pressure curves (EPC) from the urethral compressive musculature (UCM) by functional magnetic stimulation in healthy volunteers and patients with neurogeneic incontinence. Neurourol Urodyn 2005 24(2): 117-127.
  8. Culkin D and Binins MV. Urolithiasis in spinal cord disorders. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 314.
  9. Barboi C, Peruzzi WT. Acute medical management of spinal cord injury. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 120-121.
  10. Hsiao I, Perkash A, Perkash I, et al. Functional magnetic stimulation enhances fibronolysis in patients with spinal cord injury. Conference Abstracts. Congress of Spinal Cord Medicine and Rehabilitation. 2008.

BIOFEEDBACK

  1. The Brucker Biofeedback Center. www.bruckerbiofeedbackcenter.com [Accessed December 16, 2009].
  2. Brucker BS, Bulaeva NV. Biofeedback effect on electromyography responses in patients with spinal cord injury. Arch Phys Med Rehabil 1996; 77(2): 133-137.
  3. Wolfe DL, Hayes KC, Potter PJ, et al. Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients. J Neurotrauma 1996; 13(6): 281-289.
  4. IMF Therapy, www.imf-therapy.co.uk [Accessed December 16, 2009].
  5. Schmidt U, Buschmann A, Jung JY, et al. IMF-therapy (intention controlled myfeedback) to improve sensomotoric function in paraplegics. 6th European Trauma Congress, Prague, Czech Republic, May 2004.

BRAIN-COMPUTER INTERFACE

  1. Cyberkinetics Neurotechnology Systems, www.cyberkineticsinc.com [Accessed December 4, 2006].

  2. BrainGate2: Feasibility Study of an Intracortical Neural Interface System for Persons with Tetraplegia. http://www.clinicaltrials.gov/ct2/show/NCT00912041?term=Braingate2&rank=1 [Accessed December 17, 2009].

  3. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442(7099): 164-171.

  4. Kim S-K, Simeral JD, Hochberg LR, et al. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng; 5: 455-476.

  5. Truccolo W, Friehs GM, Donoghue JP, et al. Primary motor cortex to intended movement kinematics in humans with tetraplegia. J Neurosci 2008; 28(5): 1163-1178.

  6. Hochberg LR. Turning thought into action. N Engl JMed  2008; 359(11): 1175-7.

NUTRITION

  1. Jacobs PL, Mahoney ET, Cohn KA, et al. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Arch Phys Med Rehabil 2002; 83(1): 19-23.
  2. Adams KK, Priebe M, Umoh MS. The effects of creatine loading on the peak power production in patients with spinal cord injuries: A pilot study. Arch Phys Med Rehabil 2000; 81; 1263.
  3. Kendall RW, Jacquemin G, Frost R, et al. Creatine supplmentation for weak muscles in persons with chronic tetraplegia: A randomized double-blind placebo-controlled crossover trial. J Spinal Cord Med 2005; 28(3): 208-213.
  4. Tarnopolsky M, Martin J. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 1999; 52(4): 854-857.
  5. Hausmann ON, Fouad K, Wallimann T. et al. Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord 2002; 40(9): 449-456.
  6. Rabchevsky AG, Sullivan PG, Fugaccia I, et al. Creatine diet supplementation for spinal cord injury: Influences on functional recovery and tissue sparing in rats. J Neurotrauma 2003; 20(7): 659-669.
  7. Bauman WA, Zhong Y-G, Schwartz E., Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 1995; 44(12): 1612-1616.
  8. Bauman WA, Morrison NG, Spungen AM. Vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med 2005; 28(3): 203-207.
  9. Oleson CV, Patel PH, Wuermser, LA. Influence of season, ethnicity, and chronicity on vitamin D deficiency in tramatic spinal cord injury. J Spinal Cord Med 2010; 33(3): 202-213.
  10. Nemunaitis GA, Mejia M, Nagy JA, et al. A descriptive study on vitamin D levels in individuals with spinal cord injury in an acute inpatient rehabilitation setting. PM&R 2010; 2(3): 202-208.
  11. Koc RA, Akedimir H, Kurtsoy A et al. Lipid peroxidation in experimental spinal cord injury. Res Exp Med 1995; 195: 117-123.
  12. Ao Q, Sun X-H Sun, Wang A-J et al. Protective effects of extract of Ginkgo biloba (EGB 761) on nerve cells after spinal cord injury in rats. Spinal Cord 2006; 44: 662-667.
  13. Plunet WT, Streijger F, Lam CK et al. Dietary restriction after spinal cord injury improves functional recovery. Exp Neurol 2008; 213: 28-35.
  14. Davis LM, Pauly JR, Readnower RD, et al. Fasting is neuroprotective following traumatic brain injury. J Neurosci Res 2008; 86(8): 1812-1822.
  15. Sun J-H, Gao Y-M, Yang L et al. Effects of buyyang huanwu decoction on neurite outgrowth and differentiation of neuroepithelial stem cells. Chin J Physiol 2007; 50(4): 151-156.
  16. Chen A, Wang H, Zhang J et al. BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 2008; 117(3): 451-456.
  17. Fan L, Wang K, Cheng B. Effects of buying huanwu decoction on apoptosis of nervous cells and expressions of Bci-2 and bax in the spinal cord of ischemia-reprusion injury ion rabbits. J Tradit Chin Med 2006; 26(2): 153-156.
  18. Cheng YS, Cheng WS, Yao CH et al. Effects of buyang decoction on peripheral nerve regeneration using silicon rubber chambers. Am J Chin Med 2001; 29(3-4): 423-432.
  19. Quercetin, http://en.wikipedia.org/wiki/Quercetin. [Accessed September 9, 2009].
  20. Schultke E, Kendall E. Kamencic H, et al. Quercetin promotes functional recovery following acute spinal cord injury. J Neurotrauma 2003; 20(6): 583-591.
  21. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field test in rats. J Neurotrauma 1995; 12(1): 1-21.
  22. Schultke E, Kamencic H, Skihar VM, et al. Quercetin in an animal model of spinal cord compression injury: correlation of treatment duration with recovery of motor function.  Spinal Cord 2009; Epub ahead of print.
  23. Schultke E, Kamencic H, Zhao M, et al. Neuroprotection following fluid percussion brain trauma: A pilot study using quercetin. J Neurotrauma 2005; 22(1): 1475-1484.
  24. Saunders RD, Dugan LL, Demediuk P, et al. Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on archidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 1987; 49(1): 24-31.
  25. Anderson DK, Waters TR, Means ED. Pretreatment with alpha tocopherol enhances neurological recovery after experimental spinal cord compression injury. J Neurotrauma 1988 5(1): 61-67.
  26. Iwasa K, Ikata T, Fukuzawa K. Protective effect of vitamin E on spinal cord injury by compression and concurrent lipid peroxidation. Free Radic Biol Med 1989; 6: 599-606.
  27. Iaoka Y, Ikata T, Fukuzawa K. Influence of dietary deficiency on compression injury of rat spinal cord. J Nutr Sci Vitaminol; 36: 217-226.
  28. Al Jadid MSI, Robert A, Al-Mubarak. The efficacy of alpha-tocopherol in functional recovery of spinal cord injured rats: an experimental study. Spinal Cord 2009; 47: 662-667.
  29. Yune TY, Lee JY, Cui CM, et al. Neuroprotective effect of Scutellaria bicalensis on spinal cord injury in rats. J Neurochem 2009; 110(4): 1276-1287.
  30. Patel SP, Sullivan PG, Lyttle TS, et al. Acetyl-L-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord. J Neurochem 2010; 14(1): 291-301.
  31. Patel SP, Sullivan PG, Lyttle TS, et al. Acetyl-L-carnitine treatment following spinal cord injury improves mitochdrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 2012; 210: 296-307.
  32. Su C, Zhang D, Truong J, et al. Effects of novel herbal formulation JSK on acute spinal cord injury in rats. Restor Neurol Neurosci 2013; 31: 597-617.

EASTERN MEDICINE HEALING APPROACHES

  1. Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials. http://apps.who.int/medicinedocs/en/d/Js4926e/. [Accessed December 20, 2009].
  2. Swanson C. Life Force, The Scientific Basis: Breakthrough Physics of Energy Medicine, Healing, Chi and Quantum Physics. Tucson, AZ: Poseidia Press; 2010.
  3. Dorsher PT, McIntosh PM. Acucpunture’s effects in treating the sequelae of acute and chronic spinal cord injuries: a review of allopathic and traditional Chinese medicine literature. Evid Based Complement Alternat Med 2009 [Epub ahead of print].
  4. Shin BC, Lee MS, Kong KC, et al. Acupuncture for spinal cord injury survivors in Chinese literature: a systemic review. Complement Ther Med 2009; (17(5-6): Epub 2009.
  5. Heo I, Shin BC, Kim YD, et al. Acupuncture for spinal cord injury and its complications: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2013; Epub 2013 Feb 17.
  6. Gao, X, Gao C, Gao J, et al. Acupuncture treatment of complete traumatic paraplegia; Analysis of 261 Cases. J Traditional Chinese Medicine 1996; 16(2): 134-137.
  7. Wang HJ. A survey of the treatment of traumatic paraplegia by traditional Chinese medicine, J Chin Med 1992; 12(4): 296-303.
  8. Cheng PT, Wong MK, Chang PL. A therapeutic trial of acupuncture in neurogenic bladder of spinal cord injured patients – a preliminary report. Spinal Cord 1998; 36(7): 476-480.
  9. Wong AM, Leong CP, Su TY, et al. Clinical trial of acupuncture for patients with spinal cord injury. Am J Phys Med Rehabil 2003; 82(1): 21-27.
  10. Honjo H, Kitakoji H, Kawakita K, et al. Acupuncture for urinary incontinence in patients with chronic spinal cord injury. A preliminary report. Nippon Hinyokika Gakkai Zasshi 1998; 89(7): 665-669.
  11. Nayak S, Shiflett SC, Schoenberg NE, et al. Is acupuncture effective after treating chronic pain after spinal cord injury? Arch Phys Med Rehabil 2001; 82(11): 1578-1586.
  12. Dyson-Hudson TA, Shilett SC, Kirshblum SC, et al. Acupuncture and trager psychophysical integration in the treatment of wheelchair user’s shoulder pain in individuals with spinal cord injury. Arch Phys Med Rehabil 2001; 82(8): 1038-1046.
  13. Dyson-Hudson TA, Kadar P, LaFountain M, et al. Acupuncture for chronic pain in persons with spinal cord injury: a small-scale clinical trial. Arch Phys Med Rehabil 2008; 89(1): 1276-1283.
  14. Rapson LM, Wells N, Pepper J, et al. Acupuncture as a promising treatment for below-level central neuropathic pain: a retrospective study. J Spinal Cord Med 2003; 26(1): 21-26.
  15. Yang C, Li B, Liu TS, et al. Effect of electroacupuncture on proliferation of astrocytes after spinal cord injury. Zhongguo Zhen Jiu 2005; 25(8): 569-572.
  16. Ding Y, Yan Q, Ruan JW, et al. Electro-acupuncture promotes survival, differentiation of the bone marow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci 2009; 10: 35.
  17. Yan Q, Ruan JW, Ding Y, et al. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxico Pathol [Epub ahead of print]
  18. Sun Z, Li X, Su Z, et al. Electroacupuncture-enhanced differentiation of bone marrow stromal cells into neuronal cells. J Sport Rehabil 2009; 18(3): 398-406.
  19. Liu Z, Ding Y, Zeng YS. A new combined therapeutic strategy of governor vessel electroacupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord. Curr Med Chem 2011; 18(33): 5165-1571.
  20. Shang C. 2001. Electrophysiology of growth control and acupuncture. Life Sci 68:1333-1342.
  21. Shang C. Prospective tests on biological models of acupuncture. Evid Based Complement Alternat Med 2009; 6(1): 31-39.
  22. Charles Shang, Harvard Medical School (personal communication, June 10, 2006).
  23. Johnston L. Scalp acupuncture. PN/Paraplegia News, February 2002: 14-15.
  24. SCI & Scalpacupunture, www.healingtherapies.info/ScalpAcupuncture2.htm [Accessed December 20, 2009].
  25. Zhu’s Scalp Acupuncture, www.scalpacupuncture.org [Accessed December 20, 2009].
  26. Zhu MQ. Zhu’s Scalp Acupuncture. Hong Kong: 8 Dragons Publishing.
  27. Cohen KS. The Way of Qigong: The Art and Science of Chinese Energy Healing. New York, NY; The Ballantine Publishing Group: 1997.
  28. Trieschmann, RB. Energy Medicine for Long-Term Disabilities. Disabil Rehabil 1999; 21(5-6): 269-276.
  29. Johnston L. Ancient healing for a new millennium (ayurvedic medicine). PN/Paraplegia News, November & December, 1999.
  30. Prasad GC, Khanna RP, Prakash V, et al. Effect of lajjawanti (mimosa pudica Linn.) on regeneration of nerve. Jur Res Ind Med 1975; 10(4): 37-44.
  31. Withania somnifera. http://en.wikipedia.org/wiki/Withania_somnifera [Accessed December 21, 2009].
  32. Tohda C. Overcoming several neurodegenerative diseases by traditional medicines: the development of therapeutic medicines and unraveling pathophysiological mechanisms. Yakugaku Zasshi 2008; 128(8): 1159-1167.
  33. Johnston L. Human spinal cord injury: new and emerging approaches to treatment. Spinal Cord 2001; 39: 609-613.
  34. Zwick D. Integrating yoga into rehab for spinal cord injury. Integrating Iyengar yoga into rehab for spinal cord injury. PT/OT Insider October 2006: 18-22.
  35. Johnston L. Yoga & SCI. PN/Paraplegia News, April 2007.
  36. Sanford M. Waking: Waking: A Memoir of Trauma and Transcendence. Rodale, 2006.

LASER & LASER ACUPUNCTURE THERAPY

  1. Anders JJ. The Potential of light therapy for central nervous system injury and disease. Photo Med Laser Surg 2009; 27(3): 379-380.
  2. Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: A review of the literature. Muscle Nerve 2005; 31(6): 694-701.
  3. Snyder SK, Byrnes KR, Borke RC, Sanchez A, et al. Quantification of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 2002; 31(3): 216-222.
  4. Shin DH, Lee E, Hyun JK, et al. Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 2003; 344(2): 71-74.
  5. Rochkind S. Phototherapy in peripheral nerve regeneration: From basic science to clinical study. Neurosurg Focus 2009; 26(2): E8.
  6. Rochkind S, El-Ani D, Nevo Z, et al. Increase of neuronal sprouting and migration using 780 nm laser phototherapy as a procedure for cell therapy. Lasers Surg Med 2009; 41(4): 277-281.
  7. Rochkind, S:  Chapter XVI Laser therapy in the treatment of peripheral nerve and spinal cord injuries, in Simunovic, Z (ed): Lasers in Medicine and Dentistry: Basic Science and Up-To-Date Clinical Application of Low Energy-Level Laser Therapy. Rijeka (Croatia): Vitgraf, 2000: 309 -318.
  8. Rochkind S, Shahar A, Amon M, et al. Transplantation of embryonal spinal cord nerve cells cultured on biodegradable microcarriers followed by low power laser irradiation for the treatment of traumatic paraplegia in rats. Neurol Res 2002; 24(4): 355-360.
  9. Rochkind S, Geuna S, Shainberg A. Chapter 25: Phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeration. Int Rev Neurobiol 2009; 87: 445-464.
  10. Rochkind S, Leider-Trejo L, Nissan M,  et al., Efficacy of 780-nm Laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 2007; 25(3): 137-143.
  11. Rochkind S, Drory V, Alon M, et al. Laser phototherapy (780 nm), a new modality in treatment of long-term incomplete peripheral nerve injury: A randomized double-blind placebo-controlled study. Photomed Laser Surg 2007; 25(5): 436-442.
  12. Light therapy alters gene expression after acute spinal cord injury, http://www.healingtherapies.info/Laser-Therapy%20in%20Rats.htm.  
  13. Byrnes KR, Waynant RW, Ilev IK, et al. Genomic analysis of spinal cord following injury and phyo-biomodulation. Lasers Med Sci 2002; 17: A28.
  14. Byrnes KR, Waynant RW, Ilev IK, et al. Alteration in gene expression following spinal cord injury and photo-biomodulation. Lasers Surg Med Supp 2003; 15; 41.
  15. Byrnes KR, Waynant RW, Ilev IK, et al.  Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 2005; 36(3): 171-185.
  16. Byrnes KR, Wu X, Waynant RW, et al. Low power irradiation alters gene expression of olfactory ensheathing cells. Lasers Surg Med 2005; 37(2): 161-171.
  17. Wu X, Dmitriev AE, Cardoso MJ, et al. 810 nm wavelength light: An effective therapy for transected or contused rat spinal cord. Lasers Surg Med 2009; 41(1): 36-41.
  18. Johnston L. The French connection (laserpuncture) PN/Paraplegia News, September 2000: 18-19.
  19. Laserpuncture, www.laserpuncture.eu [Accessed December 22, 2009].    
  20. Bohbot, A. Laserponcture contribution in the neural restoration. 1st International Association of Neural Restoration Annual Conference, Beijing, China, May 2008.
  21. Restructuring of Limb Morphology by Laserponcture Therapy and Preliminary Research to Understand its Mechanism of Action on Muscle Activity in Patients with Spinal Cord Injury: Prospective Clinical study of 22 patients with Spinal Cord Injury, who Underwent Laserponcture Treatment. http://www.healingtherapies.info/Laserpuncture-Study.htm [Accessed December 22, 2009].
  22. Bohbot A. Olfactory ensheathing glia transplantation combined with Laserponcture® in human spinal cord injury: Results measured by electromyography monitoring. Cell Transplant 2010; 19(2): 179-184.
  23. Branco K, Naeser, MA. Carpal Tunnel Syndrome: Clinical outcome after low-level laser acupuncture, microamps transcutaneous electrical  nerve stimulation, and other alternative therapies - an open protocol study, J Altern Complement Med 1999; 5(1): 5-26.
  24. Naeser MA, Hahn KK, Lieberman BE, et al. Carpal tunnel syndrome pain treated with low-level laser and microamps TENS, controlled study, Arch Phys Med Rehabil 2001; 83: 978-988.
  25. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: A new treatment strategy. Stroke 2007; 38(6): 1843-1849.
  26. Zivin JA, Albers GW, Bornstein N, et al. Effectiveness and safety of transcranial laser therapy for acute ischemia stroke. Stroke 2009, February 20, [Epup ahead of print].
  27. Oron A, Oron U, Streeter J, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 2007; 24(4): 651-656.

 

BODYWORK THERAPIES

  1. Upledger JE. Your Inner Physician and You: Craniosacral Therapy & Somatoemotional Release. Berkeley, California: North Atlantic Books, 1997.
  2. Johnston L. The right touch? (craniosacral therapy) PN/Paraplegia News, November 1998: 36-40.
  3. Johnston L. Alternative Medicine and Spinal Cord Injury: Beyond the Banks of the Mainstream. New York, NY: Demos Medical Publishing; 2006.
  4. Diego MA, Field T, Hernandez-Reif M, et al. Spinal cord patients benefit from massage therapy. Intern J Neuroscience 2002; 112(2): 133-142.
  5. Nayak S, Matheis RJ, Agostinelli MA, et al. The use of complementary and alternative therapies for chronic pain following spinal cord injury: a pilot study.  J Spinal Cord Med 2001; 24(1): 54-62.
  6. Johnston L. Chiropractic healing PN/Paraplegia News, October and November 2003.

MOTIVATIONAL HEALING

  1. Johnston L. Mind instructor PN/Paraplegia News, February and March 2005.
  2. Mind Instructor Clinic, www.mindinstructor.com [Accessed December 22, 2009].
  3. Ogali H. My Mind My Master. London, UK, copyright Hratch Ogali; 2006.

INDIGENOUS HEALING

  1. WHO Traditional Medicine Strategy 2002-2005. Geneva, Switzerland: World Health Organization, 2002.
  2. Johnston L. New & emerging approaches to spinal cord injury treatment. Spinal Cord 2001; 39(11): 609-613.
  3. Johnston L. Alternative Medicine and Spinal Cord Injury: Beyond the Banks of the Mainstream. New York, NY: Demos Medical Publishing; 2006.
  4. Cohen K. Honoring the Medicine: The Essential Guide to Native American Healing. New York (NY): One World Ballantine Books, 2003.
  5. Mehl-Madrona LE. Native American medicine in the treatment of chronic illness: developing an integrative program and evaluating its effectiveness. Alternative Therapies, 1999; 5(1): 36-44.
  6. Cohen K. American Indian Healing in the Land of Fire and Ice. http://www.wholistichealingresearch.com/11Cohen.html?searched=Kenneth+Cohen&advsearch=oneword&highlight=ajaxSearch_highlight+ajaxSearch_highlight1+ajaxSearch_highlight2. [Accessed May 18, 2010].
  7. Johnston L. Soul medicine for disability (curanderismo). PN/Paraplegia News, June and August, 2006.
  8. Avila E., Woman Who Glows in the Dark. New York, NY: Penguin Books, 2000.
  9. Ankhkasta Natural Healing. www.ankhkasta.org [Accessed December 22, 2009].

OTHER ENERGY-BASED ALTERNATIVE THERAPIES

  1. Hunt VV. Infinite Mind: Science of the Human Vibrations of Consciousness. Malibu (CA): Mailbu Publishing Co., 1996.
  2. Brennan BA. Hands of Light: A Guide to Healing Through the Human Energy Field. New York, (NY): Bantam Books, 1988.
  3. Healing Touch International, www.healingtouchinternational.org [Accessed November 22, 2009].
  4. Hover-Kramer D. Healing Touch: A Guidebook for Practitioners (2nd Edition). Clifton Park NY: Delmar Cengage Learning; 2002.
  5. Krieger D. Accepting Your Power to Heal: The Personal Practice of Therapeutic Touch. Rochester, VT: Bear & Company Publishing; 1993.
  6. Healing Touch Level 1 Techniques (DVD). Arvada, CO: Healing Touch Program: 2008.
  7. Wardell DW, Rintala D, Tan G. Study descriptions of healing touch with veterans experiencing chronic neuropathic pain from spinal cord injury. Explore (NY) 2008 4(3): 187-195.
  8. Wardell DW, Rintala D, Duan Z, et al. A pilot study of healing touch and progressive relaxation for chronic neuropathic pain in persons with spinal cord injury. J Holist Nurs 2006; 24(4): 231-240.
  9. Johnston L. Alternative Medicine and Spinal Cord Injury; Beyond the Banks of the Mainstream. Demos Medical Publishing, 2006.
  10. Cooke MB. Einstein Doesn’t Work Here Anymore: A Treatise on the New Science. Toronto, Canada: Marcus Books, 1983.
  11. Franks NP, Dickinson R, de Sousa SLM, et al. How does xenon produce anaesthesia? Nature 1998; 396(6709): 324.
  12. Wilhelm S, Ma D, Maze M. et al., Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002; 96(1): 1485-1491.
  13. Ma D, Wilhelm M, Maze M, et al. Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth 2002; 89(5): 739-746.
  14. Homi HM, Yokoo N, Ma D, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 2003; 99(4): 876-881.
  15. Ma D, Williamson P, Januszewski A, et al.  Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 2007; 106(4): 746-753.
  16. Coburn M, Maze M, Franks NP. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 2008; 36(2): 588-595.

ANIMAL THERAPY PROGRAMS

  1. Lechner HE, Feldhaus S, Gudmundsen L, et al. The short-term effect of hippotherapy on spasticity in patients with spinal cord injury. Spinal Cord 2003; 41: 502-505.
  2. Lechner HE, Kakebeeke TH, Hegemann, et al. The effect of hippotherapy on spasticity and on mental well-being of persons with spinal cord injury. Arch Phys Med Rehabil 2007; 88: 1241-1248.
  3. Asselin N, Neri R, Ramanujam S, et al. Linking evidence to nursing practice: Benefits of a therapeutic horse back riding program. Congress of Spinal Cord Medicine and Rehabilitation, Dallas, Texas, USA, September 2009.
  4. Johnston L. Bourne R, Dolphin-Assisted Healing. Paraplegia News, July, 1999.
  5. Johnston L, Bourne R. An Indescribable Gyration of Synergy (Dolphin-Assisted Therapy). In Burns N, Ed. Lore of the Dolphin. Hillsboro, OR: Beyond Words Publishing; 2002: 177-178.

           SCI & MALE SEXUAL FUNCTION

    1. Sexuality and Reproductive Health in Adults with Spinal Cord Injury: A Clinical Practice Guideline for Health-Care Professionals. Published by Paralyzed Veterans of America January 2010.  www.pva.org [Accessed February 22, 2010].
    2. Maytom MC, Derry FA, Dinsmore WW, et al. A two-part pilot study of sildenafil (viagra) in men with erectile dysfunction caused by spinal cord injury. Spinal Cord 1999; 37: 110-116.
    3. Giuliano F, Hulting C, Wagih S, et al. Randomized trial of sildenafil for the treatment of erectile dysfunction in spinal cord injury. Ann Neurol 1999; 46(1): 15-21.
    4. Schmid DM, Schurch B, Hauri D. Sildenafil in the treatment of sexual dysfunction in spinal cord-injured male. Eur Urol 2000; 38(2): 184-193.
    5. Green BG, Martin S. Clinical assessment of sildenafil in the treatment of neurogenic male sexual dysfunction: after the hype. NeuroRehabilitation 2000; 15(2): 101-105.
    6. Sánchez Ramos A, Vidal J, Jáuregui ML, et al. Efficacy, safety and predictive factors of therapeutic success with sildenafil for erectile dysfunction in patients with different spinal cord injuries. Spinal Cord 2001; 39: 637-643.
    7. Ethans KD, Casey AR, Schryvers OI, et al. The effects of sildenafil on the cardiovascular response in men with spinal cord injury at or above the sixth thoracic level. J Spinal Cord Med 2003; 26(3): 222-226.
    8. Ergin S, Gunduz B, Ugurlu H, et al. A Placebo-controlled, multicenter, randomized, double-blind, flexible-dose, two-way crossover study to evaluate the efficacy and safety of sildenafil in men with traumatic spinal cord injury and erectile dysfunction. J Spinal Cord Med 2008; 31(5): 522-531.
    9. Giuliano F, Rubio-Aurioles E, Kennelly M, et al. Efficacy and safety of vardenafil in men with erectile dysfunction caused by spinal cord injury. Neurology 2006; 66(2): 210-216.
    10. Giuliano F, Rubio-Aurioles E, Kennelly M, et al. Vardenafil improves ejaculation success rates and self-confidence in men with erectile dysfunction due to spinal cord injury. Spine 2008; 33(7): 709-715.
    11. Kimoto Y, Sakamoto S, Fujikawa K, et al. Up-titration of vardenafil dose from 10 mg to 20 mg improved erectile function in men with spinal cord injury. Int J Urol 2006; 13(11): 1428-1433.
    12. Gacci M, Del Popola G, Macchiarella A, et al. Vardeafil improves urodynamic parameters in men with spinal cord injury: results from a single dose, pilot study. J Urol 2007; 178(5): 2040-2043.
    13. Giuliano F, Sanchez-Ramos A, Lochner-Ernst D, et al. Efficacy and safety of tadalafil in in men with erectile dysfunction following spinal cord injury. Arch Neurol 2007; 64(11): 1584-1592.
    14. Lombardi G, Macchiarella A, Cecconi F et al., Efficacy and safety of medium and long-term tadalafil use in spinal cord patients with erectile dysfunction. J Sex Med 2009; 6(2): 535-543.
    15. Caverject. www.caverjectimpulse.com [accessed December, 22, 2009].
    16. Beretta G, Zanollo A, Fanciullacci F, et al. Intracavernous injection of papaverine in paraplegic males. Acta Eur Fertil 1986; 17(4): 283-284.
    17. Sidi AA, Cameron JS, Dystra DD, et al. Vasoactive intracavernous pharmacotherapy for the treatment of erectile impotence in men with spinal cord injury. J Urol 1987; 138(3): 539-542.
    18. Earle CM, Keogh EJ, Ker JK, et al. The role of intracavernosal vasoactive agents to overcome impotence due to spinal cord injury. Paraplegia 1992:  30(4): 273-276.
    19. Kapoor VK, Chahai AS, Jyoti SP, et al. Intracavernous papaverine for impotence in spinal cord injured patients. Paraplegia 1993; 31(10): 675-677.
    20. Hirsch IH, Smith RL, Chancellor MB, et al. Use of intracavernous injection of prostaglandin E1 for neuropathic erectile dysfunction. Paraplegia 1994; 32(10): 661-664.
    21. Zaslau S, Nicolis C, Galea G, et al. A simplified pharmacologic erection program for patients with spinal cord injury. J Spinal Cord Med. 1999; 33(12): 731-733.
    22. MUSE (Alprostadil) Urethral Suppository. www.muserx.net [Accessed December 22, 2009].
    23. Bodner DR, Haas CA, Krueger B, et al. Intraurethral alprostadil for treatment of erectile dysfunction in patients with spinal cord injury. Urology 1999; 53(1): 199-202.
    24. Goldstein I, Payton TR, Schechter PJ. A double-blind, placebo-controlled, efficacy and safety study of topical gel formulation of 1% alprostadil (topiglan for the in-office treatment of erectile function. Urology 2001; 57(2): 301-305.
    25. Sonksen J, Biering-Sorensen F. Transcutaneous nitroglycerin in the treatment of erectile dysfunction in spinal cord injured. Paraplegia 1992; 30(8): 554-557.
    26. Beretta G, Saltarelli O, Marzotto M, et al. Transcutaneous minoxidal in the treatment of erectile dysfunction in spinal cord injured men. Acta Eur Fertil 1993; 24(1): 27-30.
    27. Kim ED, McVary KT. Topical prostaglandin-E1 for the treatment of erectile dysfunction. J Urol 1995; 153(6): 1828-1830.
    28. Kim ED, el-Rashidy R, McVary KT. Papaverine topical gel for treatment of erectile dysfunction. J Urol 1995; 153(2): 361-365.
    29. Renganathan R, Suranjan B, Kurien T. Comparison of transdermal nitroglycerine and intracavernous injection of papaverine in the treatment of erectile dysfunction in patients with spinal cord lesions. Spinal Cord 1997; 35(2): 99-103.
    30. Zazler ND, Katz PG. Synergistic erection system in the management of impotence secondary to spinal cord injury. Arch Phys Med Rehabil 1989; 70(9): 712-716.
    31. Heller L, Keren O, Aloni R, et al. Open trial of vacuum penile tumescence: constriction therapy for neurological impotence. Paraplegia 1992; 30(8): 550-553.
    32. Denil J, Ohl DA, Smythe C. Vacuum erection device in spinal cord injured men: patient and partner satisfaction. Arch Phys Med Rehabil 1996; 77(8), 750-753.
    33. Elliot S. Sexual dysfunction and infertility in men with spinal cord disorders. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 349-365.
    34. DeForge D, Blackmer J, Garritty C, et al. Male erectile dysfunction following spinal cord injury: a systematic review. Spinal Cord 2006; 44: 465-473.
    35. Zermann DH, Kutzenberger J, Sauerwein D, et al. Penile prosthetic surgery in neurologically impaired patients: long-term followup. J Urol 2006; 175: 1041-1044.

Urinary Tract Infections

  1. Prevention and Management of Urinary Tract Infections in Paralyzed Persons. Agency for Health Care Policy and Research (AHCPR) Evidence Report/Technology Assessment No 6 (AHCPR Publication No. 99-E008) www.ahrq.gov/clinic/epcsums/utisumm.htm [Accessed December 22, 2009].
  2. Waites KB, Canupp KC, DeVivo MJ. Epidemiology and risk factors for urinary tract infection following spinal cord injury. Arch Phys Med Rehabil 1993; 74(7): 691-695.
  3. Biering-Sorensen F, Bagi P, Hoiby N. Urinary tract infections in patients with spinal cord lesions: treatment and prevention. Drugs 2004; 61(9): 1275-1287.
  4. Fisher JA. The Plague Makers: How We Are Creating New Epidemics – And What We Must Do To Avert Them. New York: Simon & Schuster, 1994.
  5. Gilmore MS, Ferretti JJ. The thin line between gut commensal and pathogen. Science 2003; 299: 1999-2002.
  6. Kevorkian GC, Merritt JL, Ilstrup DM. Methenamine mandelate with acidification: An effective urinary antiseptic in patients with neurogenic bladder. Mayo Clin Proc 1984; 59: 523-529.
  7. Krebs M, Halvorsen RB, Fishman IJ, et al. Prevention of urinary tract infection during intermittent catheterization. J Urol 1984; 131(1): 82-85.
  8. Lee BB, Haran MJ, Hunt LM, et al. Spinal-injured neuropathic bladder (SINBA) trial. Spinal Cord 2007; 45: 542-550.
  9. Hull R, Rudy D, Donovan W, et al. Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J Urol 2000; 163(3): 872-877.
  10. Darouiche RO, Donovan WH, Del Terzo M, et al. Pilot trial of bacterial interference for preventing urinary tract infection. Urology 2001; 58(3): 339-344.
  11. Darouiche RO, Thornby JI, Cerra-Stewart C, et al., Bacterial interference for prevention of urinary tract infection: A prospective, randomized, placebo-controlled, double-blind pilot trial. Clin Infect Dis 2005; 41(10): 1531-1534.
  12. Prevention of Urinary Tract Infection (UTI) in Persons with Spinal Cord Injury (SCI). http://www.clinicaltrials.gov/ct2/show/NCT00309114?term=urinary+tract+infections+and+spinal+cord+injury&rank=4 [Accessed December 22, 2009].
  13. Trautner BW, Hull RA, Darouiche RO. Escherichia coli 83972 inhibits catheter adherence by a broad spectrum of uropathogens. Urology 2003; 61(5): 1059-1062.
  14. Trautner BW, Hull RA, Darouiche RO. Prevention of catheter-associated urinary tract infection. Curr Opin Infect Dis 2005; 18(1): 37-41.
  15. Prasad A, Cervallos ME, Riosa S, et al. A bacterial interference strategy for prevention of UTI in persons practicing intermittant catheterization. Spinal Cord 2009; 47(7): 565-569.
  16. Reid G, Hsiehl J, Potter P. Cranberry juice consumption may reduce biofilms on uroepithelial cells: pilot study in spinal cord injured patients. Spinal Cord 2001; 39: 26-30.
  17. Hess MJ, Hess PE, Sullivan MR, et al. Evaluation of cranberry tablets for the prevention of urinary tract infections in spinal cord injured patients with neurogenic bladder. Spinal Cord 2008; 46(9): 622-626.
  18. Linsenmeyer TA, Harrison B, Oakley A, et al. Evaluation of cranberry supplement for reduction of urinary tract infections in individuals with neurogenic bladders secondary to spinal cord injury. A prospective, double-blinded, placebo-controlled, crossover study. J Spinal Cord Med 2004; 27(1): 29-34.
  19. Waites KB, Canupp KC, Armstrong S, et al. Effect of cranberry extract on bacteriuria and pyuria in persons with neurogenic bladder secondary to spinal cord injury. J Spinal Cord Med 2004; 27(1): 35-40.
  20. Vitamin C for Prevention of Urinary Tract Infections in the Spinal Cord Injured. http://www.clinicaltrials.gov/ct2/show/NCT00869427?term=vitamin+C+and+AND+%22Urinary+tract+infections%22&rank=1. [Accessed December 22, 2009].
  21. Johnston L. Alternative Medicine and Spinal Cord Injury: Beyond the Banks of the Mainstream. New York, NY: Demos Medical Publishing; 2006.
  22. Blue M. D-mannose & urinary tract infections (including SCI):   www.healingtherapies.info/D-Mannose.htm [Accessed December 22, 2009].
  23. Vitamin C for Prevention of Urinary Tract Infections in the Spinal Cord Injured. http://www.clinicaltrials.gov/ct2/show/NCT00869427?term=vitamin+C+and+AND+%22Urinary+tract+infections%22&rank=1. [Accessed December 22, 2009].

PAIN

SCI Pain Prevalence:

 

  1. Fenollosa P, Pallares J, Cervera J, et al. Chronic pain in the spinal cord injured: statistical approach and pharmacological treatment. Paraplegia 1993; 31(11): 722-729.
  2. Stormer S, Gerner HJ, Gruninger W, et al. Chronic pain/dysaesthesiae in spinal cord injury patients: results of a multicentre study. Spinal Cord 1997; 35(7): 446-455.
  3. Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI: A patient survey. Spinal Cord 2000; 38(10): 611-614.
  4. Finnerup NB, Johannesen IL, Sindrup SH, et al. Pain and dysesthesia in patients with spinal cord injury; A postal survey. Spinal Cord 2001; 39(5): 256-262.
  5. Sidall PJ, McClelland JM, Rutkowski SB, et al. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003; 103(3): 249-257.
  6. Cardenas DD, Bryce TN, Shem K, et al. Gender and minority differences in the pain experience of people with spinal cord injury. Arch Phys Med Rehabil 2004; 85(11): 1774-1781.
  7. Donnelly C, Eng JJ. Pain following spinal cord injury: the impact on community reintegration. Spinal Cord 2005; 43(5): 278-282.

Types of SCI Pain:

  1. Bryce TN, Ragnarsson KT. Pain management in persons with spinal cord disorders. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 441-460.
  2. Bryce TN, Dijkers MP, Ragnarsson KT, et al. Reliability of the Bryce/Ragnarsson spinal cord injury pain taxonomy. J Spinal Cord Med 2006; 29(2): 118-132.

Pharmaceutical Approaches:

Anticonvulsants:

  1. Levendoglu F, Ogun CO, Ozerbil O, et al. Gabapentine is a first line drug for the treatment of neuropathic pain in spinal cord injury. Spine 2004; 29(7): 743-751.
  2. To TP, Lim TC, Hill ST, et al. Gabapentin for neuropathic pain following spinal cord injury. Spinal Cord 2002; 40: 282-285.
  3. Ahn SH, Park HW, Lee BS, et al. Gabapentin effect on neuropathic pain compared among patients with spinal cord injury and different durations of symptoms. Spine 2003; 28(4): pp 341-346.
  4. Putzke JD, Richards JS, Kezar L, et al., Long-term use of gabapentin for treatment of pain after traumatic spinal cord injury. Clin J Pain 2002; 18(2): 116-121.
  5. Sidall PJ, Cousins MJ, Otte A, et al. Pregablin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology 2006; 67(10): 1792-1800.
  6. Vranken JH, Dijkgraaf MG Kruis MR, et al., Pregabalin in patients with central neuropathic pain: A randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain 2008; 136(1-2): 150-157.
  7. Finnerup NB, Sindrup SH, Bach FW, et al. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain 2002; 96(3): 375-383.

Antidepressants:

  1. Rintala DH, Holmes SA, Courtade D, et al. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil 2007; 88(12): 1547-1560.
  2. Cardenas DD, Warms CA, Turner JA, et al. Efficacy of amitriptyline for relief of pain in spinal cord injury: results of a randomized controlled trial. Pain 2002; 96(3): 365-373.

Analgesics:

  1. Finnerup NB, Biering-Sorensen F, Johannesen IL, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology 2005; 102(5): 1023-1030.
  2. Attal N, Gaude V, Brasseur L, et al., Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology 2000; 54(3): 564-574.
  3. 3. Loubser PG, Donovan WH. Diagnostic spinal anaesthesia in chronic spinal cord injury pain. Paraplegia 1991; 29(1): 25-36.
  4. Kvarnstrom A, Karlsten R, Quiding H, et al. The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand 2004; 48(4): 498-506.
  5. Eide PK, Stubhaug A, Stenehjem AE. Central dysesthesia pain after traumatic spinal cord injury is dependent on N-methyl-d-aspartate receptor activation. Neurosurgery 1995; 37(6): 1080-1087.
  6. Norrbrink C, Lundeberg T. Tramadol in neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled trial. Clin J Pain 2009; 25(3): 177-184.
  7. Attal N, Gurimand F, Brasseur L et al. Effects of IV morphine in central pain: a randomized placebo-controlled study. Neurology 2002; 58(4): 554-563.
  8. Siddall PJ, Molloy AR, Walker S et al. The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury. Anesth Analg 2000 91(6): 1493-1498.
  9. Sanford PR, Benes PS. Use of capsaicin in the treatment of radicular pain in spinal cord injury. J Spinal Cord Med 2000; 23(4): 238-243.

 Anti-Spasticity:

  1. Herman RM, D’Luzansky SC, Ippolito R. Intrathecal baclofen suppresses central pain in patients with spinal lesions. A pilot study. Clin J Pain 1992; 8(4): 338-345.
  2. Loubser PG, Akman NM. Effects of Intrathecal baclofen on chronic spinal cord injury pain. J Pain Symptom Manage 1996; 12(4): 241-247.
  3. Marciniak C, Rader L, Gagnon C. The use of botulinum toxin for spasticity after spinal cord injury. Am J Phys Med Rehabil 2008; 87(4): 318-320.
  4. Hagenbach U, Luz S, Ghafoor N et al. The treatment of spasticity with ∆9-tetrahydrocannabinol in persons with spinal cord injury. Spinal Cord 2007; 45(8): 552-562.

SURGICAL APPROACHES

DREZ Lesioning:

  1. Bryce TN, Ragnarsson KT. Pain management in persons with spinal cord disorders. In Lin VW, ed. Spinal Cord Medicine: Principles and Practice. New York, NY: Demos Medical Publishing; 2003: 455.

  2. Nashold BS, Ostdahl RH. Dorsal root entry zone lesions for pain relief. J Neurosurg 1979; 51: 59-69.

  3. Nashold BS, Bullitt E. Dorsal root entry zone lesions to control central pain in paraplegics. J Neurosurg 1981; 55(3): 414-419.

  4. Richter HP, Seitz K. Dorsal root entry zone lesions for the control of deafferentaion pain: experiences in 10 patients. Neurosurgery 1984; 15(6): 956-959.

  5. Samii M, Moringlane JR. Thermocoagulation of the dorsal root entry zone for the treatment of intractable pain.  Neurosurgery 1984; 15(6): 953-955.

  6. Powers SK, Adams JE, Edwards MS, et al. Pain relief from dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers. J Neurosurg 1984; 61(5): 841-847.

  7. Friedman AH, Nashold BS. DREZ lesions for relief of pain related to spinal cord injury. J Neurosurg 1986; 65(4): 465-469.

  8. Powers SK, Barbaro NM, Levy RM. Pain control with laser-produced dorsal root entry zone lesions. Appl Neurophysiol 1988; 51(2-5): 243-254.

  9. Nashold BS, Vieira J, el-Naggar AO. Pain and spinal cysts in paraplegia: treatment by drainage and DREZ operation. Br J Neurosurg 1990; 4(4): 327-335.

  10. Young RF. Clinical experience with radiofrequency and laser DREZ lesions. J Neurosurg 1990; 72(5): 715-720.

  11. Edgar RE, Best lG, Quail PA, et al. Computer-assisted DREZ microcoagulation: posttraumatic spinal deafferentation pain. J Spinal Disord 1993; 6(1): 48-56.

  12. Sampson JH, Cshman RE, Nashold BS, et al. Dorsal roor entry zone lesions for intractable pain after trauma to the conus medullaris and cauda equine. J Neurosurg 1995; 82(1): 28-34.

  13. Rath SA, Braun V., Soliman N, et al. Results of DREZ coagulations for pain related to plexus lesions, spinal cord injuries and postherpetic neuralgia. Acta Neurochir (Wien) 1996; 138(4): 364-369.

  14. Rath SA, Seitz K, Soliman N, et al. DREZ coagulations for deafferentation pain related to spinal and peripheral nerve lesions: indication and results of 79 consecutive procedures. Stereotact Funct Neurosurg 1997; 68(1-4): 161-167.

  15. Spaic M, Petkovic S, Tadic R, et al. DREZ surgery on conus medullaris (after failed implantation of vascular omental graft) for treating chronic pain due to spin (gunshot) injuries. Acta Neurochir (Wien) 1999; 141(12): 1309-1312.

  16. Sindou M, Mertens P, Wael M. Microsurgical DREZotomy for pain due to spinal cord and/or cauda equine injuries: long-term results in a series of 44 patients. Pain 2001; 92(1-2): 159-171.

  17. Falci S., Best L, Bayles R, et al. Dorsal Root entry zone microcoagulation for spinal cord injury-related central pain: operative intramedullary electrophysiologial guidance and clinical outcome. J Neurosurg 2002; 97(2 Suppl):193-200.

  18. Kanpolat Y, Tuna H, Bozkurt M, et al. Spinal and nucleus caudalis dorsal root entry zone operations for chronic pain. Neurosurgery 2008; 62(3 suppl 1): 235-242.

  19. Ruiz-Juretschke F, Garcia-Salazar F, Garcia-Leal R, et al. Treatment of neuropathic pain using DREZ lesions; long-term results. Neurologia 2011; 26(1): 26-31.

OTHER PAIN-MANAGEMENT TECHNIQUES

Acupuncture

  1. Birch S, Hammerschlag R, Berman BM. Acupuncture in the treatment of pain. J Altern Complement Med 1996; 2(1): 101-124.

  2. Morris MM. Overview of acupuncture in chronic pain clinical research. J Altern Complement Med 1996; 2(1): 125-127.

  3. Reed JC. Review of acute and chronic pain published studies. J Altern Complement Med 1996; 2(1):129-144.

  4. Pomeranz B. Scientific research into acupuncture for the relief of pain. J Altern Complement Med 1996; 2(1): 53-60.

  5. Alavi A, LaRiccia PJ, Sadek AH, et al. Neuroimaging of acupuncture in patients with chronic pain. J Altern Complement Med 1996; 3(Supplement 1): S47-53.

  6. National Institutes of Health Consensus Development Statement – Acupuncture, 1997. http://consensus.nih.gov/1997/1997Acupuncture107html.htm [Accessed July 11, 2012].

  7. Green S, Buchbinder R, Hetrick S. Acupuncture for shoulder pain. Cochrane Database Syst Rev; 18(2): CD005319.

  8. Nayak S, Shiflett SC, Schoenberger NE, et al. Is acupuncture effective in treating chronic pain after spinal cord injury? Arch Phys Med Rehabil 2001; 82(11): 1578-1586.

  9. Rapson L, Biemann I, Bharatwal N, et al. Acupuncture treatment of pain in SCI. J Spinal Cord Med 1995; 18: 133.

  10. Rapson LM, Wells N, Pepper J, et al. Acupuncture as a promising treatment for below-level central neuropathic pain: a retrospective study. J Spinal Cord Med 2003; 26(1): 21-26.

  11. Dyson-Hudson TA, Shiflett SC, Kirshblum SC, et al. Acupuncture and Trager psychophysical integration in the treatment or wheelchair user’s shoulder pain in individuals with spinal cord injury.  Arch Phys Med Rehabil 2001; 82(8): 1038-1046.

  12. Dyson-Hudson TA, Kadar P, LaFountaine M, et al. Acupuncture for chronic shoulder pain in persons with spinal cord injury: A small-scale clinical trial. Arch Phys Med Rehabil 2007; 88(10): 1276-1283.

  13. Norrbrink C, Lundeberg T. Acupuncture and massage therapy for neuropthic pain following spinal cord injury: an exploratory study. Acupunct Med 2011; 29(2): 108-115.

1.    Hypnosis

  1. Jensen MP, Barber J. Hypnotic analgesia of spinal cord injury pain. Australian Journal of Clinical Hypnosis 2000; 28(2): 150-168.

  2. Jensen MP, Hanley MA, Engel JM, et al. Hypnotic analgesia for chronic pain in persons with disabilities: A case series. Int J Clin Exp Hypn 2005; 53(2): 198-228.

  3. Jensen MP, Barber J. Hanley MA, et al. Long-term outcome of hypnotic-analgesia treatment for chronic pain in persons with disabilities. Int J Clin Exp Hypn 2008; 52(2): 156-169.

  4. Stoelb BL, Jensen MP, Tackett MJ. Hypnotic analgesia for combat-related spinal-cord injury pain: a case study. Am J Clin Hypn 2009 51(3): 273-280.

  5. Jensen MP, Barber J, Romano JM, et al. Effects of self-hypnosis training and emg biofeedback relaxation training on chronic pain in persons with spinal cord injury. Int J Clin Exp Hypn 2009; 57(3): 239-268.

  6. Using Hypnosis for Spinal Cord Injury Pain Management, http://sci.washington.edu/info/forums/reports/hypnosis_for_sci_pain.asp  [Accessed June 14, 2012].

Transcutaneous Electrical Nerve Stimulation (TENS)

  1. Transcutaneous electrical nerve stimulation, http://en.wikipedia.org/wiki/Transcutaneous_electrical_nerve_stimulation [Accessed July 21, 2012].

  2. Transcutaneous Electrical Nerve Stimulation, http://emedicine.medscape.com/article/325107-overview [Accessed July 21, 2012].

  3. Johnson M, Martinson M. Efficacy of electrical nerve stimulation for chronic musculoskeletal pain: a meta-analysis of randomized controlled trials. Pain 2007; 130(1-2): 157-165.

  4. Nnoaham KE, Kumbang J. Transcutaneous electrical nerve stimulation (TENS) for chronic pain. Cochrane Database Syst Rev, 2008; July 16; (3): CD003222.

  5. Davis R, Lentini R. Transcutaneous nerve stimulation for treatment of pain in patients with spinal cord injury. Surg Neurol 1975; 4(1): 100-101.

  6. Hachen HJ. Psychological, neurophysiological and therapeutic aspects of chronic pain: Preliminary results with transcutaneous electrical stimulation. Paraplegia 1978; 15(4): 353-363.

  7. Norrbrink C. Transcutaneous electrical nerve stimulation for treatment of spinal cord injury neuropathic pain. J Rehabil Res Dev 2009; 46(1): 85-93.

Healing Touch

  1. Wardell DW, Rintala D, Tan G. Study descriptions of healing touch with veterans experiencing chronic neuropathic pain from spinal cord injury. Explore (NY) 2008 4(3): 187-195.

  2. Wardell DW, Rintala D, Duan Z, et al. A pilot study of healing touch and progressive relaxation for chronic neuropathic pain in persons with spinal cord injury. J Holist Nurs 2006; 24(4): 231-240.

Vitamin D

  1. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357(3): 266-281.

  2. Straube S, Moore RA, Derry S, et al. Vitamin D and chronic pain. Pain 2009; 141: 10-13.

  3. Heath KM, Elovic EP. Vitamin D deficiency: implications in the rehabilitation setting. Am J Phys Med Rehabil 2006; 85(11): 916-923.

  4. Bauman WA, Zhong Y-G, Schwartz E., Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 1995; 44(12): 1612-1616.

  5. Bauman WA, Morrison NG, Spungen AM. Vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med 2005; 28(3): 203-207.

  6. Oleson CV, Patel PH, Wuermser, LA. Influence of season, ethnicity, and chronicity on vitamin D deficiency in tramatic spinal cord injury. J Spinal Cord Med 2010; 33(3): 202-213.

 

Emotional Freedom Technique

  1. EFT: Emotional Freedom Techniques:  www.eftuniverse.com [Accessed September 11, 2012].  is a comprehensive EFT website listing many resources (including a free “get-started package”), training opportunities, and practitioners.
  2. Ball R. Freedom at your Fingertips. Fredericksburg, VA:, Inroads Publishing, 2006.
  3. Johnston L. Tap your troubles away (Part 1). PN/Paraplegia News December 2010: 28-30.
  4. Johnston L. Tap your troubles away (Part 2). PN/Paraplegia News February 2011: 35-38.

Exercise

  1. Curtis KA, Tyner TM, Zachery L, et al. Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. Spinal Cord 1999; 37(6): 421-429.
  2. Hicks AL, Martin KA, Ditor DS, et al. Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 2003; 41(1): 34-43.
  3. Nawoczenski DA, Ritter-Soronen JM, Wilson CM, et al. Clinical Trial of Exercise for Shoulder pain in chronic spinal injury. Phys Ther 2006; 86(12): 1604-1618.
  4. Nash MS, van de Ven I, van Elk N, et al. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil 2007; 88(1): 70-75.
  5. Mulroy SJ, Thompson L, Kemp B, et al. Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys Ther 2011; 91(3): 305-324.
  6. Norrbrink C, Lindberg T, Wahman K, et al. Effects of an exercise programme on musculoskeletal and neuropathic pain after spinal cord injury – results from a seated double-poling ergometer study. Spinal Cord 2012; 50(6): 457-461.

 

TOP